| classify | Classify data points |
| coef.dpGLM | Extract dpGLM fitted coefficients |
| coef.hdpGLM | Extract hdpGLM fitted coefficients |
| hdpGLM | Fit Hierarchical Dirichlet Process GLM |
| hdpGLM_classify | Deprecated |
| hdpGLM_package | hdpGLM: A package for computating Hierarchical Dirichlet Process Generalized Linear Models |
| hdpGLM_simParameters | Simulate the parameters of the model |
| hdpGLM_simulateData | Simulate a Data Set from hdpGLM |
| mcmc_info.dpGLM | mcmc |
| mcmc_info.hdpGLM | mcmc |
| nclusters | nclusters |
| plot.dpGLM | Default plot for class dpGLM |
| plot.hdpGLM | Plot |
| plot_beta | Plot beta posterior distribution |
| plot_beta_sim | Plot simulated data |
| plot_hdpglm | Plot posterior distributions |
| plot_pexp_beta | Plot beta posterior expectation |
| plot_tau | Plot tau |
| predict.dpGLM | dpGLM Predicted values |
| predict.hdpGLM | hdpGLM Predicted values |
| print.dpGLM | |
| print.dpGLM_data | |
| print.hdpGLM | |
| print.hdpGLM_data | |
| summary.dpGLM | Summary for dpGLM class |
| summary.dpGLM_data | Summary dpGLM data |
| summary.hdpGLM | Summary for hdpGLM class |
| summary.hdpGLM_data | Summary |
| summary_tidy | Tidy summary |
| welfare | Fake data set with 2000 observations |
| welfare2 | Fake data set with 2000 observations |