The Kermack-McKendrick SIR model is defined as
dS/dt = -beta*N*S
dI/dt = beta*N*S - gamma*I
dR/dt = gamma*I
This model consists of two reactions with the following per capita rates,
transmission: beta
recovery: gamma
Load package
library(GillespieSSA)Define parameters
parms <- c(beta=.001, gamma=.100)
tf <- 100 # Final time
simName <- "Kermack-McKendrick SIR" # NameDefine initial state vector
x0 <- c(S=500, I=1, R=0)Define state-change matrix
nu <- matrix(c(-1,0,1,-1,0,1),nrow=3,byrow=TRUE)Define propensity functions
a <- c("beta*S*I", "gamma*I")Run simulations with the Direct method
set.seed(1)
out <- ssa(
x0 = x0,
a = a,
nu = nu,
parms = parms,
tf = tf,
method = ssa.d(),
simName = simName,
verbose = FALSE,
consoleInterval = 1
)
ssa.plot(out, show.title = TRUE, show.legend = FALSE)Run simulations with the Explict tau-leap method
set.seed(1)
out <- ssa(
x0 = x0,
a = a,
nu = nu,
parms = parms,
tf = tf,
method = ssa.etl(),
simName = simName,
verbose = FALSE,
consoleInterval = 1
)
ssa.plot(out, show.title = TRUE, show.legend = FALSE)Run simulations with the Binomial tau-leap method
set.seed(2) # for some reason, this does not work with seed = 1
out <- ssa(
x0 = x0,
a = a,
nu = nu,
parms = parms,
tf = tf,
method = ssa.btl(),
simName = simName,
verbose = FALSE,
consoleInterval = 1
)
ssa.plot(out, show.title = TRUE, show.legend = FALSE)Run simulations with the Optimized tau-leap method
set.seed(1)
out <- ssa(
x0 = x0,
a = a,
nu = nu,
parms = parms,
tf = tf,
method = ssa.otl(),
simName = simName,
verbose = FALSE,
consoleInterval = 1
)
ssa.plot(out, show.title = TRUE, show.legend = FALSE)