| cl_max_correlation | A maximum correlation coefficient classifier (CL) |
| cl_poisson_naive_bayes | A Poisson Naive Bayes classifier (CL) |
| cl_svm | A support vector machine classifier (CL) |
| convert_matlab_raster_data | Convert raster data in MATLAB to R |
| create_binned_data | Convert data from raster format to binned format |
| cv_standard | The standard cross-validator (CV) |
| ds_basic | A basic datasource (DS) |
| ds_generalization | A datasource (DS) that allows training and testing on different but related labels |
| fp_select_k_features | A feature preprocessor (FP) that reduces data to the k most selective features |
| fp_zscore | A feature preprocessor (FP) that z-score normalizes the data |
| get_num_label_repetitions | Get the number of sites have at least k trials of each label level |
| get_num_label_repetitions_each_site | Get the number of trial repetitions for a given label for each site |
| get_parameters.cv_standard | Get parameters of an NeuroDecodeR object |
| get_siteIDs_with_k_label_repetitions | Get the sitesIDs that have at least k trials for all label level |
| log_check_results_already_exist | A function that checks if a decoding analysis has already been run |
| log_load_results_from_params | A function that loads DECODING_RESULTS based on decoding_parameters |
| log_load_results_from_result_name | A function that loads DECODING_RESULTS based on the result_name |
| log_save_results | Saves the DECODING_RESULTS and logs the parameters used in the analysis |
| plot.label_repetition | A plot function for label_repetition object |
| plot.raster_data | A plot function for data in raster format |
| plot.rm_confusion_matrix | A plot function for the rm_confusion_matrix object |
| plot.rm_main_results | A plot function for the rm_main_results object |
| plot_main_results | A plot function to plot multiple rm_main_results |
| read_raster_data | Read a csv, rda, rds or mat file in raster format |
| rm_confusion_matrix | A result metric (RM) that calculates confusion matrices |
| rm_main_results | A result metric (RM) that calculates main decoding accuracy measures |
| run_decoding.cv_standard | A cross-validator (CV) method to run a decoding analysis |
| test_valid_raster_format | Tests if a data frame is in valid raster format |