| add_effect_diagnostic | Add an additional diagnostic to the effect model |
| add_effect_model | Add an additional model to the joint effect ensemble |
| add_known_propensity_score | Uses a known propensity score |
| add_moderator | Adds moderators to the configuration |
| add_outcome_diagnostic | Add an additional diagnostic to the outcome model |
| add_outcome_model | Add an additional model to the outcome ensemble |
| add_propensity_diagnostic | Add an additional diagnostic to the propensity score |
| add_propensity_score_model | Add an additional model to the propensity score ensemble |
| add_vimp | Adds variable importance information |
| attach_config | Attach an 'HTE_cfg' to a dataframe |
| basic_config | Create a basic config for HTE estimation |
| Constant_cfg | Configuration of a Constant Estimator |
| construct_pseudo_outcomes | Construct Pseudo-outcomes |
| Diagnostics_cfg | Configuration of Model Diagnostics |
| estimate_QoI | Estimate Quantities of Interest |
| HTE_cfg | Configuration of Quantities of Interest |
| KernelSmooth_cfg | Configuration for a Kernel Smoother |
| Known_cfg | Configuration of Known Model |
| make_splits | Define splits for cross-fitting |
| MCATE_cfg | Configuration of Marginal CATEs |
| Model_cfg | Base Class of Model Configurations |
| Model_data | R6 class to represent data to be used in estimating a model |
| predict.SL.glmnet.interaction | Prediction for an SL.glmnet object |
| produce_plugin_estimates | Estimate models of nuisance functions |
| QoI_cfg | Configuration of Quantities of Interest |
| remove_vimp | Removes variable importance information |
| SL.glmnet.interaction | Elastic net regression with pairwise interactions |
| SLEnsemble_cfg | Configuration for a SuperLearner Ensemble |
| SLLearner_cfg | Configuration of SuperLearner Submodel |
| Stratified_cfg | Configuration for a Stratification Estimator |
| VIMP_cfg | Configuration of Variable Importance |