Package 'MatchGATE'

January 20, 2025

Title Estimate Group Average Treatment Effects with Matching

Version 0.0.10

Description Two novel matching-based methods for estimating group average treatment effects (GATEs). The match_y1y0() and match_y1y0_bc() functions are used for imputing the potential outcomes based on matching and bias-corrected matching techniques, respectively. The EstGATE() function is employed to estimate the GATE after imputing the potential outcomes.

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.1

Imports locpol, stats

NeedsCompilation no

Author Zhaoqing Tian [aut, cre, com] (<https://orcid.org/0009-0001-6786-0924>), Peng Wu [aut, ths] (<https://orcid.org/0000-0001-7154-8880>), Yilin Chen [dtc] (<https://orcid.org/0009-0009-2418-1348>)

Maintainer Zhaoqing Tian <tzqluck@163.com>

Repository CRAN

Date/Publication 2024-04-08 15:10:05 UTC

Contents

EstGATE 2 natch_y1y0 3	
natch_y1y0_bc	1
e	5

Index

EstGATE

Description

When imputed values for Y^1 and Y^0 are available for each individual, we can use EstGATE to estimate the group average treatment effects (GATE) defined by

$$GATE(z) = E[Y^1 - Y^0 | Z = z]$$

for some for possible values z of Z.

Usage

EstGATE(Y1_Y0, Z, Zeval, h)

Arguments

Y1_Y0	A vector in which each element is a treatment effect for each individual.
Z	A subvector of the covariates X, which is used to define the subgroup of interest.
Zeval	Vector of evaluation points of Z.
h	A smoothing parameter, bandwidth.

Value

The value of the corresponding GATE at different evaluation points.

Examples

```
set.seed(691)
n <- 2000
X1 <- runif(n, -0.5,0.5)
X2 <- rnorm(n, sd = 0.5)
X = cbind(X1, X2)
A = sample(c(0,1), n, TRUE)
YO <- X2 + X1 \times X2/2 + rnorm(n, sd = 0.25)
Y1 \le A * (2*X1^2) + X2 + X1*X2/2 + rnorm(n, sd = 0.25)
Y < -A * Y1 + (1-A) * Y0
res.match <- match_y1y0(X, A, Y, K = 5)
y1_y0 <- res.match$Y1 - res.match$Y0</pre>
Z <- X1
Zeval = seq(min(Z), max(Z), len = 101)
h <- 0.5 * n^(-1/5)
res <- EstGATE(Y1_Y0 = y1_y0, Z, Zeval, h = h)</pre>
plot(x = Zeval, y = 2*Zeval^2,
     type = "1", xlim = c(-0.6, 0.5),
     main = "Estimated value vs. true value",
     xlab = "Zeval", ylab = "GATE",
```

match_y1y0

```
col = "DeepPink", lwd = "2")
lines(x = res$Zeval, y = res$GATE,
    col="DarkTurquoise", lwd = "2")
legend('bottomleft', c("Estimated GATE","True GATE"),
    col=c("DarkTurquoise","DeepPink"),
    text.col=c("DarkTurquoise","DeepPink"), cex = 0.8)
```

match_y1y0

Imputing Missing Potential Outcomes with Matching

Description

Impute missing potential outcomes for each individual with matching.

Usage

match_y1y0(X, A, Y, K = 5, method = "euclidean")

Arguments

Х	A matrix representing covariates, where each row represents the value of a dif- ferent covariates for an individual.
А	A vector representing the treatment received by each individual.
Υ	A vector representing the observed outcome for each individual.
К	When imputing missing potential outcomes, the average number of similar in- dividuals are taken based on covariates similarity.
method	The distance measure to be used. It is a argument embed in dist function.

Details

Here are the implementation details for the imputation processes. Denote \hat{Y}_i^0 and \hat{Y}_i^1 as the imputed potential outcomes for individual *i*. Without loss of generality, if $A_i = 0$, then $\hat{Y}_i^0 = Y_i$, and \hat{Y}_i^1 is the average of outcomes for the *K* units that are the most similar to the individual *i*, i.e.,

$$\hat{Y}_i^0 = \frac{1}{K} \sum_{j \in \mathcal{J}_K(i)} Y_j,$$

where $\mathcal{J}_K(i)$ represents the set of K matched individuals with $A_i = 1$, that are the closest to the individual *i* in terms of covariates similarity, and vice versa.

Value

Returns a matrix of completed matches, where each row is the imputed (Y^1, Y^0) for each individual.

Examples

```
n <- 100
p <- 2
X <- matrix(rnorm(n*p), ncol = p)
A <- sample(c(0,1), n, TRUE)
Y <- A * (2*X[,1]) + X[,2]^2 + rnorm(n)
match_y1y0(X = X, A = A, Y = Y, K =5)</pre>
```

match_y1y0_bc Imputing Missing Potential Outcomes with Bias-Corrected Matching

Description

Impute missing potential outcomes for each individual with bias-corrected matching.

Usage

match_y1y0_bc(X, A, Y, miu1.hat, miu0.hat, K = 5, method = "euclidean")

Arguments

Х	A matrix representing covariates, where each row represents the value of a dif- ferent covariates for an individual.
A	A vector representing the treatment received by each individual.
Y	A vector representing the observed outcome for each individual.
miu1.hat	The estimated outcome regression function for Y^1 .
miu0.hat	The estimated outcome regression function for Y^0 .
К	When imputing missing potential outcomes, the average number of similar in- dividuals are taken based on covariates similarity.
method	The distance measure to be used. It is a argument embed in dist function.

Details

Here are the implementation details for the imputation processes. Denote \hat{Y}_i^0 and \hat{Y}_i^1 as the imputed potential outcomes for individual *i*. For example, if $A_i = 0$, then $\hat{Y}_i^0 = Y_i^0$. However, for obtaining \hat{Y}_i^1 , we require to introduce an outcome regression function $\mu_1(X)$ for Y^1 . Let $\hat{\mu}_1(X)$ be the fitted value of $\mu_1(X)$, then \hat{Y}_i^1 is defined as follows,

$$\hat{Y}_i^1 = \frac{1}{K} \sum_{j \in \mathcal{J}_K(i)} \{ Y_j + \hat{\mu}_1(X_i) - \hat{\mu}_1(X_j) \},\$$

where $\mathcal{J}_K(i)$ represents the set of K matched individuals with $A_i = 1$, that are the closest to the individual i in terms of covariates similarity, and vice versa.

4

Value

Returns a matrix of completed matches, where each row is the imputed (Y^1, Y^0) for each individual.

Examples

Index

dist,*3*,*4*

EstGATE, 2

match_y1y0, 3
match_y1y0_bc, 4