SKNN: A Super K-Nearest Neighbor (SKNN) Classification Algorithm

It's a Super K-Nearest Neighbor(SKNN) classification method with using kernel density to describe weight of the distance between a training observation and the testing sample. Comparison of performance between SKNN and KNN shows that SKNN is significantly superior to KNN.

Version: 4.1.1
Depends: methods, stats
Published: 2025-09-09
DOI: 10.32614/CRAN.package.SKNN
Author: Yarong Yang [aut, cre], Nader Ebrahimi [ctb], Yoram Rubin [ctb], Jacob Zhang [ctb]
Maintainer: Yarong Yang <Yi.YA_yaya at hotmail.com>
License: GPL-2
NeedsCompilation: no
CRAN checks: SKNN results

Documentation:

Reference manual: SKNN.html , SKNN.pdf

Downloads:

Package source: SKNN_4.1.1.tar.gz
Windows binaries: r-devel: SKNN_4.1.zip, r-release: SKNN_4.1.zip, r-oldrel: SKNN_4.1.zip
macOS binaries: r-release (arm64): SKNN_4.1.1.tgz, r-oldrel (arm64): SKNN_4.1.1.tgz, r-release (x86_64): SKNN_4.1.1.tgz, r-oldrel (x86_64): SKNN_4.1.1.tgz
Old sources: SKNN archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SKNN to link to this page.