Package ‘firesafety’

September 10, 2025
Title A Collection of Security Related Plugins for 'fiery'
Version 0.1.0

Description Provide a range of plugins for 'fiery' web servers that handle
different aspects of server-side web security. Be aware that security cannot
be handled blindly, and even though these plugins will raise the security of
your server you should not build critical infrastructure without the aid of
a security expert.

License MIT + file LICENSE
Encoding UTF-8

URL https://github.com/thomasp85/firesafety

BugReports https://github.com/thomasp85/firesafety/issues
Imports cli, R6, rlang (>= 1.1.0), routr (>= 1.0.0)

RoxygenNote 7.3.2

Suggests fiery (>= 1.3.0), testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Thomas Lin Pedersen [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5147-4711>),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Thomas Lin Pedersen <thomas.pedersen@posit.co>
Repository CRAN
Date/Publication 2025-09-10 08:20:02 UTC

Contents

CSP ¢ o e e e e e e e e e

SES L e e e e e e e e e e e e e e e e e e

Index

https://github.com/thomasp85/firesafety
https://github.com/thomasp85/firesafety/issues
https://orcid.org/0000-0002-5147-4711
https://ror.org/03wc8by49

2 CORS

CORS Plugin for setting up CORS in a fiery server

Description

Cross-Origin Resource Sharing (CORS) is a mechanism for servers to indicate from where it may
be accessed and allows browsers to block requests that are not permitted. For security reasons,
browsers limits requests initiated from JavaScript to only those for the same site. To allow requests
from other sites the server needs to send the right CORS headers with the response. Read more
about CORS at MDN

Details

CORS is opt-in. The security measure is already in place in browsers to limit cross-origin requests,
and CORS is a way to break out of this in a controlled manner where you can indicate exactly who
can make a request and what requests can be made. In general it works like this:

1. A request is being initiated from a website, either through JavaScript or another venue, to a
site different than the one it originates from.

2. The browser identifies that the request is cross-origin and sends an OPTIONS request to the
server with information about the request it intends to send (this is called a pre-flight request).

3. The server responds with a 204 response giving the allowed types of requests that can be made
for the resource.

4. If the original request conforms to the response the browser will then send the actual request.

5. The server responds to the actual request.

6. The client gets the response, but the browser will limit what information in the response it can
access based on the information provided by the server in the pre-flight response.

As can be seen, a CORS request is slightly more complex than the standard request-response you
normally think about. However, the pre-flight request can be cached by the browser and so, will not
happen every time a ressource is accessed. While a site may employ a CORS policy the same way
across all its endpoints it does not need to. It is fine to only turn on CORS for a subset of paths. In
general it is a good rule of thumb to set up resource isolation for the paths that do not have CORS
enabled.

Initialization

A new ’CORS’-object is initialized using the new() method on the generator and pass in any settings
deviating from the defaults

Usage

cors <- CORS$new(...)

Fiery plugin

A CORS object is a fiery plugin and can be used by passing it to the attach() method of the fiery
server object. Once attached all requests will be passed through the plugin and the policy applied
to it

https://developer.mozilla.org/docs/Web/HTTP/Guides/CORS

CORS 3

Active bindings

name The name of the plugin

Methods

Public methods:

* CORS$new()

* CORS$add_path()
* CORS$on_attach()
* CORS$clone()

Method new(): Initialize a CORS object

Usage:

CORS$new(
path = "/x",
origin = "x",
methods = c("get”, "head”, "put”, "patch”, "post”, "delete"),
allowed_headers = NULL,
exposed_headers = NULL,
allow_credentials = FALSE,
max_age = NULL

)

Arguments:

path The path that the policy should apply to. routr path syntax applies, meaning that wilcards
and path parameters are allowed.

origin The origin allowed for the path. Can be one of:

* A boolean. If TRUE then all origins are permitted and the preflight response will have the
Access-Control-Allow-Origin header reflect the origin of the request. If FALSE then
all origins are denied

* The string "*" which will allow all origins and set Access-Control-Allow-Origin to
*. This is different than setting it to TRUE because * instructs browsers that any origin is
allowed and it may use this information when searching the cache

* A character vector giving allowed origins. If the request origin matches any of these then
the Access-Control-Allow-Origin header in the response will reflect the origin of the
request

* A function taking the request and returning TRUE if the origin is permitted and FALSE if it
is not. If permitted the Access-Control-Allow-Origin header will reflect the request
origin

methods The HTTP methods allowed for the path
allowed_headers A character vector of request headers allowed when making the request. If
the request contains headers not permitted, then the response will be blocked by the browser.

NULL will allow any header by reflecting the Access-Control-Request-Headers header

value from the request into the Access-Control-Allow-Headers header in the response.

exposed_headers A character vector of response headers that should be made available to the
client upon a succesful request

CORS

allow_credentials A boolean indicating whether credentials are allowed in the request. Cre-
dentials are cookies or HTTP authentication headers, which are normally stripped from
fetch() requests by the browser. If this is TRUE then origin cannot be * according to the
spec

max_age The duration browsers are allowed to keep the preflight response in the cache

Method add_path(): Add CORS settings to a path

Usage:

CORS$add_path(
path = "/%",
origin = "x",

methods = c("get”, "head”, "put”, "patch”, "post”, "delete"),
allowed_headers = NULL,
exposed_headers = NULL,
allow_credentials = FALSE,
max_age = NULL
)

Arguments:

path The path that the policy should apply to. routr path syntax applies, meaning that wilcards
and path parameters are allowed.

origin The origin allowed for the path. Can be one of:

* A boolean. If TRUE then all origins are permitted and the preflight response will have the
Access-Control-Allow-Origin header reflect the origin of the request. If FALSE then
all origins are denied

* The string "*" which will allow all origins and set Access-Control-Allow-Origin to
*. This is different than setting it to TRUE because * instructs browsers that any origin is
allowed and it may use this information when searching the cache

* A character vector giving allowed origins. If the request origin matches any of these then
the Access-Control-Allow-0Origin header in the response will reflect the origin of the
request

* A function taking the request and returning TRUE if the origin is permitted and FALSE if it
is not. If permitted the Access-Control-Allow-Origin header will reflect the request
origin

methods The HTTP methods allowed for the path
allowed_headers A character vector of request headers allowed when making the request. If
the request contains headers not permitted, then the response will be blocked by the browser.

NULL will allow any header by reflecting the Access-Control-Request-Headers header

value from the request into the Access-Control-Allow-Headers header in the response.

exposed_headers A character vector of response headers that should be made available to the
client upon a succesful request

allow_credentials A boolean indicating whether credentials are allowed in the request. Cre-
dentials are cookies or HTTP authentication headers, which are normally stripped from
fetch() requests by the browser. If this is TRUE then origin cannot be * according to the
spec

max_age The duration browsers are allowed to keep the preflight response in the cache

csp
Method on_attach(): Method for use by fiery when attached as a plugin. Should not be
called directly.
Usage:
CORS$on_attach(app, ...)
Arguments:
app The fiery server object
. Ignored
Method clone(): The objects of this class are cloneable with this method.
Usage:
CORS$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Examples
Setup CORS for a sub path allowing access from www.trustworthy.com
Tell the browser to cache the preflight for a day
cors <- CORS$new(
path = "/shared_assets/*",
origin = "https://www.trustworthy.com”,
methods = c("get"”, "head”, "post"),
max_age = 86400
)
Use it in a fiery server
app <- fiery::Fire$new()
app$attach(cors)
csp Construct settings for the Content-Security-Policy header
Description

This helper function exists mainly to document the possible values and prevent misspelled direc-
tives. It returns a bare list. See the header reference and the CSP section of the MDN security guide

for more information on the header

https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/Content-Security-Policy
https://developer.mozilla.org/docs/Web/Security/Practical_implementation_guides/CSP

Usage

csp(

default_src = NULL,
script_src = NULL,
script_src_elem = NULL,
script_src_attr = NULL,
style_src = NULL,
style_src_elem = NULL,
style_src_attr = NULL,
img_src = NULL,

font_src = NULL,
media_src = NULL,
object_src = NULL,
child_src = NULL,
frame_src = NULL,
worker_src = NULL,
connect_src = NULL,
fenced_frame_src = NULL,
manifest_src = NULL,
prefetch_src = NULL,
base_uri = NULL,

sandbox = FALSE,
form_action = NULL,
frame_ancestors = NULL,
report_to = NULL,
require_trusted_types_for = FALSE,
trusted_types = NULL,
upgrade_insecure_requests = FALSE

)

Arguments
default_src Fallback for all other *_src values
script_src Fallback for script_src_x* values

script_src_elem

Valid sources for <script> elements

script_src_attr

Valid sources for inline event handlers

style_src Fallback for style_src_x values

style_src_elem Valid sources for <style> elements

style_src_attr

img_src Valid sources for images and favicons

font_src Valid sources for fonts loaded with @font-face

media_src Valid sources for <audio>, <video>, and <track> elements
object_src Valid sources for <object> and <embed> elements

Valid sources for inline styling of elements

csp

csp 7

child_src Fallback for frame_src and worker_src

frame_src Valid sources for <frame> and <iframe> elements

worker_src Valid sources for Worker, SharedWorker, and ServiceWorker scripts
connect_src Valid sources for URLs loaded from within scripts

fenced_frame_src
Valid sources for <fencedframe> elements

manifest_src Valid sources for application manifest files

prefetch_src Valid sources to be prefetched and prerendered

base_uri Valid sources that can be put in a <base> element
sandbox Logical. Enable sandboxing of the requested document/ressource
form_action Valid URLs to be targeted by form submissions

frame_ancestors
Valid parents that may embed this document in an <frame>, <iframe>, <object>,
or <embed> element.
report_to A URL to report violations to. Setting this will also add a report-uri directive
along with a Reporting-Endpoints header for maximum compitability.
require_trusted_types_for
Logical. Enforces Trusted Types
trusted_types Specifies an allow list of Trusted Types
upgrade_insecure_requests

Logical. Automatically treat all HTTP urls in the document as if they were
HTTPS

Value

A bare list with the input arguments

Examples

Default setting

csp(
default_src = "self",
script_src = "self”,
script_src_attr = "none”,
style_src = c("self"”, "https:"”, "unsafe-inline"),
img_src = c("self”, "data:"),
font_src = c("self”, "https:"”, "data:"),
object_src = "none”,
base_uri = "self"”,
form_action = "self”,
frame_ancestors = "self",

upgrade_insecure_requests = TRUE

https://developer.mozilla.org/en-US/docs/Web/API/Trusted_Types_API
https://developer.mozilla.org/en-US/docs/Web/API/Trusted_Types_API

8 Resourcelsolation

Resourcelsolation Fetch metadata based resource isolation plugin

Description

This plugin uses the information provided in the Sec-Fetch-* request headers to block unwanted
requests to your server coming from other sites. Setting up a strict control with which requests are
allowed is an important part of preventing some cross-site leaks as well as cross-site request forgery
attacks.

Details

Compared to the other security measures in firesafety, the reource isolation plugin is a server-side
blocker of requests. Both CORS and CORP sends back a full response and it is then up to the
browser to determine if the response becomes available to the site. In contrast, this plugin will
return a 403 response if the request fails to be accepted. This is not to say that resource isolation
is better than CORS, CORP or other measures. They all target different situations (or the same
situation from different angles) and works best in unison. You can read more about this type of
defence at MDN and XS-Leaks Wiki

How it works:

Resource isolation takes advantage of the Sec-Fetch-x headers that browser send along with
requests. These headers informs the server about the nature of the request. Where it comes from,
what action initiated it, and how it will be used. Based on this information the server may chose
to allow a request to proceed or deny it altogether. This plugin runs a request through a range of
tests and if it passes any of them it proceeds:

1. Does the request have the Sec-Fetch-* headers

2. Is allow_cors == TRUE and is Sec-Fetch-Mode set to cors

3. Is Sec-Fetch-Site set to allowed_site or a more restrictive value

4. Is the request method GET, the Sec-Fetch-Mode navigation, and the Sec-Fetch-Dest not

one of those given by forbidden_navigation

You can have different permissions for different paths. The default during initialization is to add
it to /* so that all all paths will share the same policy, but you can strengthen or loosen up specific
paths as needed. A good rule of thumb is to make the policy as restrictive as possible while
allowing your application to still work as intented. Further, if you have paths that do not have a
resource isolation policy in place these should have CORS enabled.

Initialization

A new ’Resourcelsolation’-object is initialized using the new() method on the generator and pass
in any settings deviating from the defaults

Usage

resource_isolation <- Resourcelsolation$new(...)

https://developer.mozilla.org/docs/Web/Security/Attacks/XS-Leaks#fetch_metadata
https://xsleaks.dev/docs/defenses/isolation-policies/resource-isolation/

Resourcelsolation 9

Fiery plugin
A Resourcelsolation object is a fiery plugin and can be used by passing it to the attach() method
of the fiery server object. Once attached all requests will be passed through the plugin and the policy
applied to it

Active bindings

name The name of the plugin

Methods

Public methods:
* Resourcelsolation$new()
e Resourcelsolation$add_path()
* Resourcelsolation$on_attach()
* Resourcelsolation$clone()

Method new(): Initialize a new Resourcelsolation object

Usage:

ResourcelIsolation$new(
path = "/%",
allowed_site = "same-site”,
forbidden_navigation = c("object”, "embed"),
allow_cors = TRUE

)

Arguments:

path The path that the policy should apply to. routr path syntax applies, meaning that wilcards
and path parameters are allowed.

allowed_site The allowance level to permit. Either cross-site, same-site, or same-origin.

forbidden_navigation A vector of destinations not allowed for navigational requests. See
the Sec-Fetch-Dest documentation for a description of possible values. The special value
"all” is also permitted which is the equivalent of passing all values.

allow_cors Should Sec-Fetch-Mode: cors requests be allowed

Method add_path(): Add a policy to a path

Usage:
Resourcelsolation$add_path(
path,
allowed_site,
forbidden_navigation = c("object”, "embed"),
allow_cors = TRUE
)

Arguments:

path The path that the policy should apply to. routr path syntax applies, meaning that wilcards
and path parameters are allowed.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Sec-Fetch-Dest

10 SecurityHeaders

allowed_site The allowance level to permit. Either cross-site, same-site, or same-origin.

forbidden_navigation A vector of destinations not allowed for navigational requests. See
the Sec-Fetch-Dest documentation for a description of possible values. The special value
"all” is also permitted which is the equivalent of passing all values.

allow_cors Should Sec-Fetch-Mode: cors requests be allowed

Method on_attach(): Method for use by fiery when attached as a plugin. Should not be
called directly.

Usage:
Resourcelsolation$on_attach(app, ...)
Arguments:
app The fiery server object

. Ignored

Method clone(): The objects of this class are cloneable with this method.
Usage:
Resourcelsolation$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Examples

Create resource isolation policy denying all navigation requests
resource_isolation <- Resourcelsolation$new(forbidden_navigation = "all")

Allow cross-site requests on a subpath
resource_isolation$add_path(
path = "/all_is_welcome/x",
allowed_site = "cross-site”

Use it in a fiery server
app <- fiery::Fire$new()

app$attach(resource_isolation)

SecurityHeaders Plugin for setting security related headers

Description

This plugin is inspired by Helmet.js and aids you in setting response headers relevant for security
of your fiery server. All defaults are taken from Helmet.js as well, except for the max-age of the
Strict-Transport-Security header that has been doubled to 2 years which is the recommenda-
tion.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Sec-Fetch-Dest
https://helmetjs.github.io/

SecurityHeaders 11

Details

Web security is a complicated subject and it is impossible for this document to stay current and true
at all times as well as be able to learn the user of all the intricacies of web security. It is strongly
advised that you familiarise yourself with this subject if you plan on exposing a fiery webserver to
the public. A good starting point is MDN’s guide on web security.

This plugin concerns 14 different headers that are in one way or another implicated in security.
Some of them are only relevant if you serve HTML content on the web and have no effect on e.g.
a server providing a REST api. These have been marked with UI below. While you may turn these
off for a pure API server (by setting them to NULL), it is advised that you only steer away from
the defaults if you have a good grasp of the implications. The headers are set very efficiently so
removing some unneeded ones will only have an effect on the size of the response, not the handling
time.

Headers:

Content-Security-Policy (UI):

This header provides finely grained control over what code can be executed on the site you
provide and thus help in preventing cross-site scripting (XSS) attacks. The configuration of
this header is complicated and you can read more about it at the header reference and the CSP
section of the security guide

The plugin does some light validation of the data structure you provide and you can use the
csp() constructure to get argument tab-completion.

Content-Security-Policy-Report-Only (UI):

This header is like Content-Security-Policy above except that it doesn’t enforce the policy
but rather report any violations to a URL of your choice. The reason for providing this is
that setting up CSP correctly can be difficult and may lead to your site not working correctly.
Therefore, if you apply CSP to an already excisting site it is often a good idea to start with using
this header and monitor where issues may arise before turning on the policy fully. You provide
the URL to send violation reports to with the report_to directive which should be set to a URL.
You can find more information on this header at the header reference

Cross-Origin-Embedder-Policy (UI):

This header controls which resources can be embedded in a document. If setto e.g. require-corp
then only resources that implements CORP or CORS can be embedded. It is not set by default
in SecurityHeaders. Read more about this header at MDN

Cross-0rigin-Opener-Policy (UI):

This header controls and restricts access from cross-origin windows opened from the site. It
helps isolate new documents and prevent a type of attack known as XS-Leaks. Read more about
this header at MDN and about XS-Leaks in the security guide

Cross-0Origin-Resource-Policy:

This header controls where the given response can be used. If you e.g. return an image along
with Cross-Origin-Resource-Policy: same-site, then this image is blocked from being
loaded by other sites. Read more about this header at MDN and about CORP in general in the
security guide

Origin-Agent-Cluster (UI):

This header helps isolate documents served from the same site into separate processes. This can
improve performance of other tabs if a resource intensive tab is opened but also prevent certain
information from being available to code running in the tab. Read more about this header at
MDN

https://developer.mozilla.org/docs/Web/Security
https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/Content-Security-Policy
https://developer.mozilla.org/docs/Web/Security/Practical_implementation_guides/CSP
https://developer.mozilla.org/docs/Web/Security/Practical_implementation_guides/CSP
https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/Content-Security-Policy-Report-Only
https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/docs/Web/Security/Attacks/XS-Leaks
https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/Cross-Origin-Resource-Policy
https://developer.mozilla.org/docs/Web/Security/Practical_implementation_guides/CORP
https://developer.mozilla.org/docs/Web/Security/Practical_implementation_guides/CORP
https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/Origin-Agent-Cluster

12 SecurityHeaders

Referrer-Policy (UI):

This header instructs what to include in the Referer header when navigating away from the
document. This can potentially lead to information leakage which can be alleviated using this
header. Read more about this header at MDN as well as the security implications of the Referer
header

Strict-Transport-Security:

This header informs a browser that the given resource should only be accessed using HTTPS.
This preference is cached by the browser and the next time the resource is accessed over HTTP
it is automatically changed to HTTPS before the request is made. This header should only be
sent over HTTPS to prevent a manipulator-in-the-middle from alterning its settings. In order for
this to happen SecurityHeaders will automatically redirect any HTTP requests to HTTPS if this
header is set. Read more about this header at MDN

X-Content-Type-Options:

This header instruct the client that the MIME type provided by the Content-Type should be
respected and mime-type sniffing avoided. Setting this can help prevent certain XSS attacks.
Read more about this header at MDN and about its security implication in the security guide

X-DNS-Prefetch-Control (UI):

This header controls DNS prefetching and domain name resolution. A browser may do this
in the background when a site is loaded which can reduce latency when a user clicks a link.
However, it may also leak sensitive information so turning it off may increase user privacy.
Read more about this header at MDN

X-Download-Options (UI):
This is an old header only relevant to Internet Explorer 8 and below that prevents downloaded
content from having access to your site’s context.

X-Frame-Options (UI):

This header has been superseeded by the frame-ancestor directive in the Content-Security-Policy
header but may still be good to set for older browsers. It controls whether a site is allowed to be
rendered inside a frame in another document. Preventing this can prevent click-jacking attacks.

Read more about this header at MDN

X-Permitted-Cross-Domain-Policies:

This header controls cross-origin access of a resource from a document running in a web client
such as Adobe Flash Player or Microsoft Silverlight. The demise of these technologies have
made this header less important. Read more about this header at MDN

X-XSS-Protection (UI):

This header has been deprecated in favor of the more powerful Content-Security-Policy
header. In fact using XSS filtering can incur a security vulnerability which is why the default for
SecurityHeaders is to turn the feature off (by setting X-XSS-Protection: @ rather than omitting
the header). Read more about this header at MDN

Initialization

A new ’SecurityHeaders’-object is initialized using the new() method on the generator and pass in
any settings deviating from the defaults

Usage

https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/Referrer-Policy
https://developer.mozilla.org/docs/Web/Security/Referer_header:_privacy_and_security_concerns
https://developer.mozilla.org/docs/Web/Security/Referer_header:_privacy_and_security_concerns
https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/Strict-Transport-Security
https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/X-Content-Type-Options
https://developer.mozilla.org/docs/Web/Security/Practical_implementation_guides/MIME_types
https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/X-DNS-Prefetch-Control
https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/X-Frame-Options
https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/X-Permitted-Cross-Domain-Policies
https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/X-XSS-Protection

SecurityHeaders 13

security_headers <- SecurityHeaders$new(...)

Fiery plugin

A SecurityHeaders object is a fiery plugin and can be used by passing it to the attach() method
of the fiery server object. Once attached all requests created will be prepopulated with the given
headers. Any request handler is permitted to remove one or more of the headers to opt out of them.

Active bindings

content_security_policy Set or get the value of the Content-Security-Policy header. See
csp() for documentation of its values

content_security_policy_report_only Setor getthe value of the Content-Security-Policy-Report-Only
header. See csp() for documentation of its values

cross_origin_embedder_policy Set or get the value of the Cross-Origin-Embedder-Policy.

n on

Possible values are "unsafe-none”, "require-corp”, and "credentialless”

cross_origin_opener_policy Set or get the value of the Cross-Origin-Opener-Policy. Pos-

non non

sible values are "unsafe-none”, "same-origin-allow-popups”, "same-origin”, and "noopener-allow-popups”

cross_origin_resource_policy Set or get the value of the Cross-Origin-Resource-Policy.

n o n

Possible values are "same-site”, "same-origin”, and "cross-origin”

origin_agent_cluster Set or get the value of the Origin-Agent-Cluster. Possible values are
TRUE and FALSE

referrer_policy Setor getthe value of the Referrer-Policy. Possible values are "no-referrer”,

non non non

"no-referrer-when-downgrade”, "origin”, "origin-when-cross-origin”, "same-origin”,

non

"strict-origin”, "strict-origin-when-cross-origin”, and "unsafe-url”

strict_transport_security Set or get the value of the Strict-Transport-Security header.
See sts() for documentation of its values

x_content_type_options Set or get the value of the X-Content-Type-Options. Possible values
are TRUE and FALSE

x_dns_prefetch_control Set or get the value of the X-DNS-Prefetch-Control. Possible values
are TRUE and FALSE

x_download_options Set or get the value of the X-Download-Options. Possible values are TRUE
and FALSE

x_frame_options Set or get the value of the X-Frame-Options. Possible values are "DENY" and
"SAMEORIGIN"

x_permitted_cross_domain_policies Setor getthe value of the X-Permitted-Cross-Domain-Policies.
Possible values are "none"”, "master-only"”, "by-content-type”, "by-ftp-filename”,
"all”, and "none-this-response”

x_xss_protection Set or get the value of the X-XSS-Protection. Possible values are TRUE and
FALSE

name The name of the plugin

14 SecurityHeaders

Methods

Public methods:

¢ SecurityHeaders$new()
e SecurityHeaders$on_attach()
e SecurityHeaders$clone()

Method new(): Initialize a new SecurityHeaders object

Usage:
SecurityHeaders$new(
content_security_policy = csp(default_src = "self"”, script_src = "self",
script_src_attr = "none"”, style_src = c("self”, "https:"”, "unsafe-inline"), img_src =
c("self", "data:"), font_src = c("self"”, "https:", "data:"), object_src = "none”,
base_uri = "self"”, form_action = "self"”, frame_ancestors = "self",

upgrade_insecure_requests = TRUE),
content_security_policy_report_only = NULL,
cross_origin_embedder_policy = NULL,

cross_origin_opener_policy = "same-origin",
cross_origin_resource_policy = "same-origin”,
origin_agent_cluster = TRUE,

referrer_policy = "no-referrer”,

strict_transport_security = sts(max_age = 63072000, include_sub_domains = TRUE),
x_content_type_options = TRUE,

x_dns_prefetch_control = FALSE,

x_download_options = TRUE,

x_frame_options = "SAMEORIGIN",

x_permitted_cross_domain_policies = "none",
X_xss_protection = FALSE

)

Arguments:

content_security_policy Setthe value of the Content-Security-Policy header. See csp()
for documentation of its values

content_security_policy_report_only Setthe value of the Content-Security-Policy-Report-Only
header. See csp() for documentation of its values

cross_origin_embedder_policy Setthe value of the Cross-Origin-Embedder-Policy. Pos-

non

sible values are "unsafe-none”, "require-corp”, and "credentialless”

cross_origin_opener_policy Set the value of the Cross-Origin-Opener-Policy. Pos-
sible values are "unsafe-none”, "same-origin-allow-popups”, "same-origin”, and
"noopener-allow-popups”

cross_origin_resource_policy Setthe value of the Cross-Origin-Resource-Policy. Pos-

n on

sible values are "same-site”, "same-origin”, and "cross-origin”

origin_agent_cluster Set the value of the Origin-Agent-Cluster. Possible values are
TRUE and FALSE

referrer_policy Set the value of the Referrer-Policy. Possible values are "no-referrer”,

non non non

"no-referrer-when-downgrade”, "origin”, "origin-when-cross-origin”, "same-origin”,

non

"strict-origin”, "strict-origin-when-cross-origin”, and "unsafe-url”

SecurityHeaders 15

strict_transport_security Setthe value of the Strict-Transport-Security header. See
sts() for documentation of its values

x_content_type_options Set the value of the X-Content-Type-Options. Possible values
are TRUE and FALSE

x_dns_prefetch_control Set the value of the X-DNS-Prefetch-Control. Possible values
are TRUE and FALSE

x_download_options Set the value of the X-Download-Options. Possible values are TRUE
and FALSE

x_frame_options Set the value of the X-Frame-Options. Possible values are "DENY" and
"SAMEORIGIN"

x_permitted_cross_domain_policies Setthe value of the X-Permitted-Cross-Domain-Policies.

non

Possible values are "none”, "master-only”, "by-content-type", "by-ftp-filename"”,
"all”, and "none-this-response"”

x_xss_protection Set the value of the X-XSS-Protection. Possible values are TRUE and
FALSE

Method on_attach(): Method for use by fiery when attached as a plugin. Should not be
called directly.

Usage:
SecurityHeaders$on_attach(app, ...)

Arguments:
app The fiery server object
. Ignored

Method clone(): The objects of this class are cloneable with this method.
Usage:
SecurityHeaders$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

Create a plugin that turns off UI-related security headers
security_headers <- SecurityHeaders$new(

)

content_security_policy = NULL,
cross_origin_embedder_policy = NULL,
cross_origin_opener_policy = NULL,
origin_agent_cluster = NULL,
referrer_policy = NULL,
x_dns_prefetch_control = NULL,
x_download_options = NULL,
x_frame_options = NULL,
x_xss_protection = NULL

Use it with a fiery server

16 sts

app <- fiery::Fire$new()

app$attach(security_headers)

sts Construct settings for the Strict-Transport-Security header

Description

This helper function exists mainly to document the possible values and prevent misspelled direc-
tives. It returns a bare list. See MDN for more information on the header

Usage

sts(max_age, include_sub_domains = NULL, preload = NULL)

Arguments

max_age The maximum age the settings should be kept in the browser cache, in seconds.
Recommended value is 63072000 (2 years)

include_sub_domains
Logical. Should subdomains be included in the policy

preload Allow the settings to be cached and preloaded by a third-party, e.g. Google or

Mozilla. Can only be set if include_sub_domains is TRUE and max_age is at
least 31536000 (1 year)

Value

A bare list with the input arguments

Examples

Default settings

sts(
max_age = 63072000,
include_sub_domains = TRUE

)

https://developer.mozilla.org/docs/Web/HTTP/Reference/Headers/Strict-Transport-Security

Index

CORS, 2
csp, 5
csp(), 11,13, 14

resource isolation, 2
Resourcelsolation, 8

SecurityHeaders, 10
sts, 16
sts(), 13,15

17

	CORS
	csp
	ResourceIsolation
	SecurityHeaders
	sts
	Index

