Provides optimized ‘C++’ code for computing the partial Receiver Operating Characteristic (ROC) test used in niche and species distribution modeling. The implementation follows Peterson et al. (2008) doi:10.1016/j.ecolmodel.2007.11.008. Parallelization via ‘OpenMP’ was implemented with assistance from the ‘DeepSeek’ Artificial Intelligence Assistant (https://www.deepseek.com/).
You can install the development version of fpROC from GitHub with:
# install.packages("pak")
::pak("luismurao/fpROC") pak
The package can work with numerical vectors and terra
SpatRaster objects.
An example using numerical data
set.seed(999)
# With numeric vectors
<- rnorm(100)
test_data <- rnorm(100)
pred_data <- fpROC::auc_metrics(test_prediction = test_data, prediction = pred_data) result
An example using terra
SpatRaster objects.
set.seed(999)
# With SpatRaster
library(terra)
#> terra 1.8.54
<- terra::rast(ncol=10, nrow=10)
r values(r) <- rnorm(terra::ncell(r))
<- fpROC::auc_metrics(test_prediction = test_data, prediction = r) result
CONACYT Ciencia de Frontera CF-2023-I-1156. Laboratorio Nacional de Biología del Cambio Climático, SECIHTI, México. To PAPIIT-UNAM IA202824 and PAPIIT-UNAM IA203922.RGC-D thanks the Dirección General de Asuntos del Personal Académico (DGAPA) from the UNAM, and the Secretaría de Ciencia, Humanidades, Tecnología e Innovación for her postdoctoral scholarship.