
Package ‘rts2’
June 10, 2025

Title Real-Time Disease Surveillance

Version 0.8.0

Date 2025-06-06

Description Supports modelling real-time case data to facilitate the real-time
surveillance of infectious diseases and other point phenomena. The package provides auto-
mated computational grid generation over
an area of interest with methods to map covariates between geographies, model fitting includ-
ing spatially aggregated case counts,
and predictions and visualisation. Both Bayesian and maximum likelihood methods are pro-
vided. Log-Gaussian Cox Processes are described by
Diggle et al. (2013) <doi:10.1214/13-STS441> and we provide both the low-
rank approximation for Gaussian processes
described by Solin and Särkkä (2020) <doi:10.1007/s11222-019-09886-w> and Riutort-
Mayol et al (2023) <doi:10.1007/s11222-022-10167-2> and the
nearest neighbour Gaussian process de-
scribed by Datta et al (2016) <doi:10.1080/01621459.2015.1044091>. 'cmdstanr' can be down-
loaded at <https://mc-stan.org/cmdstanr/>.

License CC BY-SA 4.0

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Biarch true

Depends R (>= 3.5.0), sf (>= 1.0-14)

Imports methods, R6, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rstan
(>= 2.26.0), rstantools (>= 2.1.1), lubridate (>= 1.9.0), stars
(>= 0.6-1), raster (>= 3.6-1)

Suggests cmdstanr (>= 0.4.0), testthat

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
RcppParallel (>= 5.0.1), rstan (>= 2.26.0), StanHeaders (>=
2.32.0), glmmrBase (>= 0.7.1), SparseChol (>= 0.2.2)

SystemRequirements GNU make

NeedsCompilation yes

1

https://doi.org/10.1214/13-STS441
https://doi.org/10.1007/s11222-019-09886-w
https://doi.org/10.1007/s11222-022-10167-2
https://doi.org/10.1080/01621459.2015.1044091
https://mc-stan.org/cmdstanr/

2 rts2-package

Author Sam Watson [aut, cre] (ORCID: <https://orcid.org/0000-0002-8972-769X>)

Maintainer Sam Watson <s.i.watson@bham.ac.uk>

Repository CRAN

Date/Publication 2025-06-10 12:50:06 UTC

Contents

rts2-package . 2
birmingham_crime . 5
boundary . 5
coef.rtsFit . 5
confint.rtsFit . 6
covariance.parameters . 6
create_points . 7
example_points . 8
family.grid . 8
family.rtsFit . 9
fitted.rtsFit . 9
fixed.effects . 10
formula.grid . 10
formula.rtsFit . 11
grid . 11
logLik.rtsFit . 32
predict.grid . 32
predict.rtsFit . 34
print.rtsFit . 34
print.rtsFitSummary . 35
progress_bar . 35
random.effects . 36
residuals.grid . 36
residuals.rtsFit . 37
summary.grid . 37
summary.rtsFit . 38
vcov.grid . 38
vcov.rtsFit . 39

Index 40

rts2-package Real-Time Disease Surveillance

https://orcid.org/0000-0002-8972-769X

rts2-package 3

Description

Supports modelling real-time case data to facilitate the real-time surveillance of infectious diseases
and other point phenomena. The package provides automated computational grid generation over
an area of interest with methods to map covariates between geographies, model fitting including
spatially aggregated case counts, and predictions and visualisation. Both Bayesian and maximum
likelihood methods are provided. Log-Gaussian Cox Processes are described by Diggle et al. (2013)
<doi:10.1214/13-STS441> and we provide both the low-rank approximation for Gaussian processes
described by Solin and Särkkä (2020) <doi:10.1007/s11222-019-09886-w> and Riutort-Mayol et al
(2023) <doi:10.1007/s11222-022-10167-2> and the nearest neighbour Gaussian process described
by Datta et al (2016) <doi:10.1080/01621459.2015.1044091>. ’cmdstanr’ can be downloaded at
<https://mc-stan.org/cmdstanr/>. rts2 provides several estimators for the Log Gaussian Cox Pro-
cess Model (LGCP). The LGCP is a stochastic Poisson model used for modelling case counts of
phenomena of interest, and is particularly useful for predicting risk across an area of interest, such
as in disease surveillance applications.

Workflow

Most of the functionality of the rts2 package is provided by the grid class. The computational
strategy for the LGCP is to divide up the area of interest into a regular grid and aggregate case
counts within cells. For models with count data aggregated to an irregular set of polygons, such as
census tracts, the latent surface is also modelled as a regular grid. A typical workflow using this
package would be:

1. Create a new grid object, e.g. g1 <- grid$new(poly, cellsize = 0.1). The class is initial-
ized with either a single polygon describing the area of interest or a collection of polygons if
spatially aggregated data are used. The sf package is used for all spatial data.

2. If the location (and times) of cases are available (i.e. the data are not spatially aggregated),
then we map the points to the computational grid. The function create_points can generate
point data in the correct sf format. The member function points_to_grid will then map
these data to the grid. Counts can also be manually added to grid data. For region data, since
the counts are assumed to be already aggregated, these must be manually provided by the
user. The case counts must appear in columns with specific names. If there is only a single
time period then the counts must be in a column named y. If there are multiple time periods
then the counts must be in columns names t1, t2, t3,... Associated columns labelled date1,
date2, etc. will permit use of some functionality regarding specific time intervals.

3. If any covariates are to be used for the modelling, then these can be mapped to the compua-
tional grid using the function add_covariates(). Other functions, add_time_indicators()
and get_dow() will also generate relevant temporal indicators where required. At a minimum
we would recommend including a measure of population density.

4. Fit a model. There are multiple methods for model fitting, which are available through the
member functions lgcp_ml() and lgcp_bayes() for maximum likelihood and Bayesian ap-
proaches, respectively. The results are stored internally and optionally returned as a rtsFit
object.

5. Summarise the output. The main functions for summarising the output are extract_preds(),
which will generate predictions of relative risk, incidence rate ratios, and predicted incidence,
and hotspots(), which will estimate probabilities that these statistics exceed given thresh-
olds. For spatially-aggregated data models, the relative risk applies to the grid, whereas rate
ratios and predicted incidence applies to the areas.

4 rts2-package

6. Predictions can be visualised or aggregated to relevant geographies with the plot() and
aggregate() functions.

Estimation methods and model specification

The rts2 package provide several methods for estimating the model and drawing samples from the
latent surface.

• Maximum Likelihood. We include stochastic maximum likelihood estimation methods includ-
ing both Markov Chain Monte Carlo (MCMC) Maximum Likelihood and Stochastic Approx-
imation Expectation Maximisation (SAEM). MCMC-ML can use Newton-Raphson, quasi-
Newton, or derivative free methods to estimate the model parameters. Both algorithms have
three steps: 1. Sample the random effects using MCMC; 2. Estimate the fixed effect param-
eters conditional on the sampled random effects; 3. Estimate the covariance parameters. The
process is iterated until convergence. Stochastic maximum likelihood estimators are provided
by the function grid$lgcp_ml().

• Bayesian. We also include Bayesian estimation of the model using Stan via either rstan or
cmdstanr, and allow both MCMC and Variational Bayes methods.

The LGCP can be computationally complex and scales poorly with sample size (number of grid
cells and time periods), due to the large covariance matrix that must be inverted to estimate the
covariance parameters. We offer several strategies and approximations for efficient model fitting:

• Gaussian Process Approximations. The package includes both Hilbert Space Gaussian Pro-
cess (see Solin and Särkkä (2020) <doi:10.1007/s11222-019-09886-w> and Riutort-Mayol
et al (2020) <arXiv:2004.11408>) and the Nearest Neighbour Gaussian Process (Datta et al
(2016) <doi:10.1080/01621459.2015.1044091>).

• For spatio-temporal models we use a "spatial innovation" formulation of the spatio-temporal
Gaussian process, for which the computational complexity is linear in the number of time
periods.

Package development

The package is still in development and there may still be bugs and errors. While we do not expect
the general user interface to change there may be changes to the underlying library as well as new
additions and functionality.

Author(s)

Sam Watson [aut, cre] (ORCID: <https://orcid.org/0000-0002-8972-769X>)

Maintainer: Sam Watson <s.i.watson@bham.ac.uk>

References

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2.
https://mc-stan.org

birmingham_crime 5

birmingham_crime Birmingham crime data

Description

Counts of burglaries for the months of 2022 for the city of Birmingham, UK at the Middle-Layer
Super Output Area.

Usage

birmingham_crime

Format

An object of class sf (inherits from data.frame) with 132 rows and 21 columns.

boundary Boundary polygon for Birmingham, UK

Description

A Boundary polygon describing the border of the city of Birmingham, UK.

Usage

boundary

Format

An object of class sf (inherits from data.frame) with 1 rows and 2 columns.

coef.rtsFit Extracts fixed effect coefficients from a rtsFit object

Description

Extracts the fitted fixed effect coefficients from an rtsFit object returned from a call of rtsFit or
LA in the Model class.

Usage

S3 method for class 'rtsFit'
coef(object, ...)

6 covariance.parameters

Arguments

object An rtsFit model fit.

... Further arguments passed from other methods

Value

A named vector.

confint.rtsFit Fixed effect confidence intervals for a rtsFit object

Description

Returns the computed confidence intervals for a rtsFit object.

Usage

S3 method for class 'rtsFit'
confint(object, ...)

Arguments

object A rtsFit object.

... Further arguments passed from other methods

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter.

covariance.parameters Extracts the estimates of the covariance parameters

Description

Extracts the estimates of the covariance parameters an rtsFit object returned from call of
lgcp_ml() or lgcp_bayes() in the grid class.

Usage

covariance.parameters(object)

Arguments

object An mcml model fit.

create_points 7

Value

A matrix of dimension (number of fixed effects) x (number of MCMC samples). For Laplace
approximation, the number of "samples" equals one.

create_points Create sf object from point location data

Description

Produces an sf object with location and time of cases from a data frame

Usage

create_points(
data,
pos_vars = c("lat", "long"),
t_var,
format = "%Y-%m-%d",
verbose = TRUE

)

Arguments

data data.frame with the x- and y-coordinate of case locations and the date of the
case.

pos_vars vector of length two with the names of the columns containing the y and x
coordinates, respectively.

t_var character string with the name of the column with the date of the case. If single-
period analysis then set t_var to NULL.

format character string with the format of the date specified by t_var. See strptime

verbose Logical indicating whether to print information

Details

Given a data frame containing the point location and date of cases, the function will return an sf
object of the points with the date information.

Value

An sf object of the same size as data

Examples

dp <- data.frame(y=runif(10,0,3),x=runif(10,0,3),date=paste0("2021-01-",11:20))
dp <- create_points(dp,pos_vars = c('y','x'),t_var='date')

8 family.grid

example_points Simulated point data for running single-period examples

Description

A set of 261 points simulated within the boundary of the city Birmingham, UK from a log-Gaussian
Cox process.

Usage

example_points

Format

An object of class data.frame with 261 rows and 3 columns.

family.grid Extracts the family from a grid object.

Description

Extracts the family from a grid object.

Usage

S3 method for class 'grid'
family(object, ...)

Arguments

object A grid object.

... Further arguments passed from other methods

Value

A family object.

family.rtsFit 9

family.rtsFit Extracts the family from a rtsFit object.

Description

Extracts the family from a rtsFit object.

Usage

S3 method for class 'rtsFit'
family(object, ...)

Arguments

object A rtsFit object.

... Further arguments passed from other methods

Value

A family object.

fitted.rtsFit Fitted values from a rtsFit object

Description

Fitted values should not be generated directly from an rtsFit object, rather fitted values should be
generated using the original grid object. A message is printed to the user.

Usage

S3 method for class 'rtsFit'
fitted(object, ...)

Arguments

object A rtsFit object.

... Further arguments passed from other methods

Value

Nothing, called for effects.

10 formula.grid

fixed.effects Extracts the fixed effect estimates

Description

Extracts the fixed effect estimates from an rtsFit object returned from call of lgcp_ml() or
lgcp_bayes() in the grid class.

Usage

fixed.effects(object)

Arguments

object An mcml model fit.

Value

A named, numeric vector of fixed-effects estimates.

formula.grid Extracts the formula from a grid object.

Description

Extracts the formula from a rtsFit object stored in a grid object. Only returns the top level formula.
For region models this is the formula at the region level, otherwise the grid-level formula is returned.
No random effects specifications are included in the returned formula.

Usage

S3 method for class 'grid'
formula(x, ...)

Arguments

x A grid object.

... Further arguments passed from other methods

Value

A formula object.

formula.rtsFit 11

formula.rtsFit Extracts the formula from a rtsFit object.

Description

Extracts the formula from a rtsFit object. Only returns the top level formula. For region models
this is the formula at the region level, otherwise the grid-level formula is returned. No random
effects specifications are included in the returned formula.

Usage

S3 method for class 'rtsFit'
formula(x, ...)

Arguments

x A rtsFit object.

... Further arguments passed from other methods

Value

A formula object.

grid An rts grid object

Description

An rts grid object

An rts grid object

Details

An rts grid object is an R6 class holding the spatial data with data, model fitting, and analysis
functions.

INTRODUCTION

The various methods of the class include examples and details of their implementation. The sf
package is used for all spatial data. A typical workflow with this class would be:

1. Create a new grid object. The class is initialized with either a single polygon describing the
area of interest or a collection of polygons if spatially aggregated data are used.

12 grid

2. If the location (and times) of cases are available (i.e. the data are not spatially aggregated),
then we map the points to the computational grid. The function create_points can generate
point data in the correct sf format. The member function points_to_grid will then map
these data to the grid. Counts can also be manually added to grid data. For region data, since
the counts are assumed to be already aggregated, these must be manually provided by the
user. The case counts must appear in columns with specific names. If there is only a single
time period then the counts must be in a column named y. If there are multiple time periods
then the counts must be in columns names t1, t2, t3,... Associated columns labelled date1,
date2, etc. will permit use of some functionality regarding specific time intervals.

3. If any covariates are to be used for the modelling, then these can be mapped to the compua-
tional grid using the function add_covariates(). Other functions, add_time_indicators()
and get_dow() will also generate relevant temporal indicators where required. At a minimum
we would recommend including a measure of population density.

4. Fit a model. There are multiple methods for model fitting, which are available through the
member functions lgcp_ml() and lgcp_bayes() for maximum likelihood and Bayesian ap-
proaches, respectively. The results are stored internally and optionally returned as a rtsFit
object.

5. Summarise the output. The main functions for summarising the output are extract_preds(),
which will generate predictions of relative risk, incidence rate ratios, and predicted incidence,
and hotspots(), which will estimate probabilities that these statistics exceed given thresh-
olds. For spatially-aggregated data models, the relative risk applies to the grid, whereas rate
ratios and predicted incidence applies to the areas.

6. Predictions can be visualised or aggregated to relevant geographies with the plot() and
aggregate() functions.

Specific details of the implementation of each of these functions along with examples appear below.

PLOTTING
If zcol is not specified then only the geometry is plotted, otherwise the covariates specified will be
plotted. The user can also use sf plotting functions on self$grid_data and self$region_data directly.

POINTS TO GRID
Given the sf object with the point locations and date output from create_points(), the functions
will add columns to grid_data indicating the case count in each cell in each time period.

Case counts are generated for each grid cell for each time period. The user can specify the length
of each time period; currently day, week, and month are supported.

The user must also specify the number of time periods to include with the laglength argument.
The total number of time periods is the specified lag length counting back from the most recent
case. The columns in the output will be named t1, t2,... up to the lag length, where the highest
number is the most recent period.

ADDING COVARIATES
Spatially-varying data only

cov_data is an object describing covariate over the area of interest. sf, RasterLayer and Spa-
tRaster objects are supported, with rasters converted internally to sf. The values are mapped onto
grid_data. For each grid cell in grid_data a weighted average of each covariate listed in zcols
is generated with weights either equal to the area of intersection of the grid cell and the polygons in
cov_data (weight_type="area"), or this area multiplied by the population density of the polygon

grid 13

for population weighted (weight_type="pop"). Columns with the names in zcols are added to the
output.

Temporally-varying only data

cov_data is a data frame with number of rows equal to the number of time periods. One of the
columns must be called t and have values from 1 to the number of time periods. The other columns
of the data frame have the values of the covariates for each time period. See get_dow() for day
of week data. A total of length(zcols)*(number of time periods) columns are added to the output:
for each covariate there will be columns appended with each time period number. For example,
dayMon1, dayMon2, etc.

Spatially and temporally varying data

There are two ways to add data that vary both spatially and temporally. The final output for use in
analysis must have a column for each covariate and each time period with the same name appended
by the time period number, e.g. covariateA1,covariateA2,... If the covariate values for different
time periods are in separate sf objects, one can follow the method for spatially-varying only data
above and append the time period number using the argument t_label. If the values for different
time periods are in the same sf object then they should be named as described above and then can
be added as for spatially-varying covariates, e.g. zcols=c("covariateA1","covariateA2").

BAYESIAN MODEL FITTING

The grid data must contain columns t*, giving the case count in each time period (see points_to_grid),
as well as any covariates to include in the model (see add_covariates) and the population density.
Otherwise, if the data are regional data, then the outcome counts must be in self$region_data

Our statistical model is a Log Gaussian cox process, whose realisation is observed on the Cartesian
area of interest A and time period T. The resulting data are relaisations of an inhomogeneous Poisson
process with stochastic intensity function {λs, t : s ∈ A, t ∈ T}. We specify a log-linear model for
the intensity:

λ(s, t) = r(s, t)exp(X(s, t)′γ + Z(s, t))

where r(s,t) is a spatio-temporally varying Poisson offset. X(s,t) is a length Q vector of covariates
including an intercept and Z(s,t) is a latent field. We use an auto-regressive specification for the
latent field, with spatial innovation in each field specified as a spatial Gaussian process.

The argument approx specifies whether to use a full LGCP model (approx='none') or whether to
use either a nearest neighbour approximation (approx='nngp') or a "Hilbert space" approximation
(approx='hsgp'). For full details of NNGPs see XX and for Hilbert space approximations see
references (1) and (2).

Priors

For Bayesian model fitting, the priors should be provided as a list to the griddata object:

griddata$priors <- list(
prior_lscale=c(0,0.5),
prior_var=c(0,0.5),
prior_linpred_mean=c(-5,rep(0,7)),
prior_linpred_sd=c(3,rep(1,7))

)

14 grid

where these refer to the priors: prior_lscale: the length scale parameter has a half-normal prior
N(a, b2)I[0,∞). The vector is c(a,b). prior_var: the standard deviation term has a half normal
prior σ N(a, b2)I[0,∞). The vector is c(a,b). prior_linpred_mean and prior_linpred_sd:
The parameters of the linear predictor. If X is the nT x Q matrix of covariates, with the first column
as ones for the intercept, then the linear prediction contains the term X ′γ. Each parameter in
γ has prior γq N(aq, b

2
q). prior_linpred_mean should be the vector (a_1,a_2,...,a_Q) and

prior_linpred_sd should be (b_1,b_2,...,b_Q).

MAXIMUM LIKELIHOOD MODEL FITTING

The grid data must contain columns t*, giving the case count in each time period (see points_to_grid),
as well as any covariates to include in the model (see add_covariates) and the population density.
Otherwise, if the data are regional data, then the outcome counts must be in self$region_data. See
lgcp_bayes() for more details on the model.

The argument approx specifies whether to use a full LGCP model (approx='none') or whether to
use either a nearest neighbour approximation (approx='nngp')

Model fitting uses one of several stochastic maximum likelihood algorithms, which have three steps:

1. Sample random effects using MCMC. Using cmdstanr is recommended as it is much faster.
The arguments mcmc_warmup and mcmc_sampling specify the warmup and sampling iterations
for this step.

2. Fit fixed effect parameters using expectation maximisation.

3. Fit covariance parameters using expectation maximisation. This third step is the slowest. The
NNGP approximation provides some speed improvements. Otherwise this step can be skipped
if the covaraince parameters are "known". The argument algo specifies the algorithm, the
user can select either MCMC maximum likelihood or stochastic approximation expectation
maximisation with or without Ruppert-Polyak averaging. MCMC-ML can be used with or
without adaptive MCMC sample sizes and either a derivative free or quasi-Newton optimiser
(depending on the underlying model).

EXTRACTING PREDICTIONS

Three outputs can be extracted from the model fit, which will be added as columns to grid_data:

Predicted incidence: If type includes pred then pred_mean_total and pred_mean_total_sd pro-
vide the predicted mean total incidence and its standard deviation, respectively. pred_mean_pp
and pred_mean_pp_sd provide the predicted population standardised incidence and its standard
deviation.

Relative risk: if type includes rr then the relative risk is reported in the columns rr and rr_sd.
The relative risk here is the exponential of the latent field, which describes the relative difference
between expexted mean and predicted mean incidence.

Incidence risk ratio: if type includes irr then the incidence rate ratio (IRR) is reported in the
columns irr and irr_sd. This is the ratio of the predicted incidence in the last period (minus
t_lag) to the predicted incidence in the last period minus irr_lag (minus t_lag). For example, if
the time period is in days then setting irr_lag to 7 and leaving t_lag=0 then the IRR is the relative
change in incidence in the present period compared to a week prior.

Public fields

grid_data sf object specifying the computational grid for the analysis

grid 15

region_data sf object specifying an irregular lattice, such as census areas, within which case
counts are aggregated. Only used if polygon data are provided on class initialisation.

priors list of prior distributions for the analysis

bobyqa_control list of control parameters for the BOBYQA algorithm, must contain named ele-
ments any or all of npt, rhobeg, rhoend, covrhobeg, covrhoend. Only has an effect for the
HSGP and NNGP approximations. The latter two parameters control the covariance parameter
optimisation, while the former control the linear predictor.

boundary sf object showing the boundary of the area of interest

Methods

Public methods:
• grid$new()

• grid$print()

• grid$plot()

• grid$points_to_grid()

• grid$add_covariates()

• grid$get_dow()

• grid$add_time_indicators()

• grid$lgcp_bayes()

• grid$lgcp_ml()

• grid$extract_preds()

• grid$hotspots()

• grid$aggregate_output()

• grid$scale_conversion_factor()

• grid$get_region_data()

• grid$variogram()

• grid$reorder()

• grid$data()

• grid$get_random_effects()

• grid$model_fit()

• grid$clone()

Method new(): Create a new grid object
Produces a regular grid over an area of interest as an sf object, see details for information on
initialisation.

Usage:
grid$new(poly, cellsize, verbose = TRUE)

Arguments:

poly An sf object containing either one polygon describing the area of interest or multiple
polygons representing survey or census regions in which the case data counts are aggregated

cellsize The dimension of the grid cells
verbose Logical indicating whether to provide feedback to the console.

16 grid

Returns: NULL

Examples:
a simple example with a square and a small number of cells
this same running example is used for the other functions
b1 = sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)

an example with multiple polygons
data("birmingham_crime")
g2 <- grid$new(birmingham_crime,cellsize = 1000)

Method print(): Prints this object

Usage:
grid$print()

Returns: None. called for effects.

Method plot(): Plots the grid data

Usage:
grid$plot(zcol)

Arguments:
zcol Vector of strings specifying names of columns of grid_data to plot

Returns: A plot

Examples:
b1 = sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
g1$plot()

a plot with covariates - we simulate covariates first
g1$grid_data$cov <- stats::rnorm(nrow(g1$grid_data))
g1$plot("cov")

Method points_to_grid(): Generates case counts of points over the grid
Counts the number of cases in each time period in each grid cell

Usage:
grid$points_to_grid(
point_data,
t_win = c("day"),
laglength = 14,
verbose = TRUE

)

Arguments:
point_data sf object describing the point location of cases with a column t of the date of the

case in YYYY-MM-DD format. See create_points
t_win character string. One of "day", "week", or "month" indicating the length of the time

windows in which to count cases

grid 17

laglength integer The number of time periods to include counting back from the most recent
time period

verbose Logical indicating whether to report detailed output

Returns: NULL

Examples:
b1 <- sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
simulate some points
dp <- data.frame(y=runif(10,0,3),x=runif(10,0,3),date=paste0("2021-01-",11:20))
dp <- create_points(dp,pos_vars = c('y','x'),t_var='date')
g1$points_to_grid(dp, laglength=5)

Method add_covariates(): Adds covariate data to the grid
Maps spatial, temporal, or spatio-temporal covariate data onto the grid.

Usage:
grid$add_covariates(
cov_data,
zcols,
weight_type = "area",
popdens = NULL,
verbose = TRUE,
t_label = NULL

)

Arguments:
cov_data sf, RasterLayer, SpatRaster object or a data.frame. See details.
zcols vector of character strings with the names of the columns of cov_data to include
weight_type character string. Either "area" for area-weighted average or "pop" for population-

weighted average
popdens character string. The name of the column in cov_data with the population density.

Required if weight_type="pop"
verbose logical. Whether to provide a progress bar
t_label integer. If adding spatio-temporally varying data by time period, this time label should

be appended to the column name. See details.

Returns: NULL

Examples:
b1 <- sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
cov1 <- grid$new(b1,0.8)
cov1$grid_data$cov <- runif(nrow(cov1$grid_data))
g1$add_covariates(cov1$grid_data,

zcols="cov",
verbose = FALSE)

\donttest{
mapping population data from some other polygons

18 grid

data("boundary")
data("birmingham_crime")
g2 <- grid$new(boundary,cellsize=0.008)
msoa <- sf::st_transform(birmingham_crime,crs = 4326)
suppressWarnings(sf::st_crs(msoa) <- sf::st_crs(g2$grid_data)) # ensure crs matches
g2$add_covariates(msoa,

zcols="pop",
weight_type="area",
verbose=FALSE)

g2$plot("pop")
}

Method get_dow(): Generate day of week data
Create data frame with day of week indicators
Generates a data frame with indicator variables for each day of the week for use in the add_covariates()
function.

Usage:
grid$get_dow()

Returns: data.frame with columns t, day, and dayMon to daySun

Examples:
b1 <- sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
dp <- data.frame(y=runif(10,0,3),x=runif(10,0,3),date=paste0("2021-01-",11:20))
dp <- create_points(dp,pos_vars = c('y','x'),t_var='date')
g1$points_to_grid(dp, laglength=5)
dow <- g1$get_dow()
g1$add_covariates(dow,zcols = colnames(dow)[3:ncol(dow)])

Method add_time_indicators(): Adds time period indicators to the data
Adds indicator variables for each time period to the data. To include these in a model fitting
procedure use, for example, covs = c("time1i, time2i,...)

Usage:
grid$add_time_indicators()

Returns: Nothing. Called for effects.

Method lgcp_bayes(): Fit an (approximate) log-Gaussian Cox Process model using Bayesian
methods

Usage:
grid$lgcp_bayes(
popdens = NULL,
covs = NULL,
covs_grid = NULL,
approx = "nngp",
m = 10,
L = 1.5,
model = "exp",

grid 19

known_theta = NULL,
iter_warmup = 500,
iter_sampling = 500,
chains = 3,
parallel_chains = 3,
verbose = TRUE,
vb = FALSE,
use_cmdstanr = FALSE,
return_stan_fit = FALSE,
...

)

Arguments:

popdens character string. Name of the population density column
covs vector of character string. Base names of the covariates to include. For temporally-

varying covariates only the stem is required and not the individual column names for each
time period (e.g. dayMon and not dayMon1, dayMon2, etc.)

covs_grid If using a region model, covariates at the level of the grid can also be specified by
providing their names to this argument.

approx Either "rank" for reduced rank approximation, or "nngp" for nearest neighbour Gaus-
sian process.

m integer. Number of basis functions for reduced rank approximation, or number of nearest
neighbours for nearest neighbour Gaussian process. See Details.

L integer. For reduced rank approximation, boundary condition as proportionate extension of
area, e.g. L=2 is a doubling of the analysis area. See Details.

model Either "exp" for exponential covariance function or "sqexp" for squared exponential co-
variance function

known_theta An optional vector of two values of the covariance parameters. If these are pro-
vided then the covariance parameters are assumed to be known and will not be estimated.

iter_warmup integer. Number of warmup iterations
iter_sampling integer. Number of sampling iterations
chains integer. Number of chains
parallel_chains integer. Number of parallel chains
verbose logical. Provide feedback on progress
vb Logical indicating whether to use variational Bayes (TRUE) or full MCMC sampling (FALSE)
use_cmdstanr logical. Defaults to false. If true then cmdstanr will be used instead of rstan.
return_stan_fit logical. The results of the model fit are stored internally as an rstFit object

and returned in that format. If this argument is set to TRUE, then the fitted stan object will
instead be returned, but the rtsFit object will still be saved.

... additional options to pass to ‘$sample()“.
priors list. See Details

Returns: A stanfit or a CmdStanMCMC object

Examples:

the data are just random simulated points
b1 <- sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))

20 grid

g1 <- grid$new(b1,0.5)
dp <- data.frame(y=runif(10,0,3),x=runif(10,0,3),date=paste0("2021-01-",11:20))
dp <- create_points(dp,pos_vars = c('y','x'),t_var='date')
cov1 <- grid$new(b1,0.8)
cov1$grid_data$cov <- runif(nrow(cov1$grid_data))
g1$add_covariates(cov1$grid_data,

zcols="cov",
verbose = FALSE)

g1$points_to_grid(dp, laglength=5)
g1$priors <- list(
prior_lscale=c(0,0.5),
prior_var=c(0,0.5),
prior_linpred_mean=c(0),
prior_linpred_sd=c(5)
)

\donttest{
g1$lgcp_bayes(popdens="cov", approx = "hsgp", parallel_chains = 0)
g1$model_fit()
we can extract predictions
g1$extract_preds("rr")
g1$plot("rr")
g1$hotspots(rr.threshold = 2)

this example uses real aggregated data but will take a relatively long time to run
data("birmingham_crime")
example_data <- birmingham_crime[,c(1:8,21)]
example_data$y <- birmingham_crime$t12
g2 <- grid$new(example_data,cellsize=1000)
g2$priors <- list(
prior_lscale=c(0,0.5),
prior_var=c(0,0.5),
prior_linpred_mean=c(-3),
prior_linpred_sd=c(5)

)
g2$lgcp_bayes(popdens="pop", approx = "hsgp", parallel_chains = 0)
g2$model_fit()
g2$extract_preds("rr")
g2$plot("rr")
g2$hotspots(rr.threshold = 2)
}

Method lgcp_ml(): Fit an (approximate) log-Gaussian Cox Process model using Maximum
Likelihood

Usage:
grid$lgcp_ml(
popdens = NULL,
covs = NULL,
covs_grid = NULL,

grid 21

approx = "nngp",
m = 10,
L = 1.5,
model = "exp",
known_theta = NULL,
starting_values = NULL,
lower_bound = NULL,
upper_bound = NULL,
formula_1 = NULL,
formula_2 = NULL,
algo = 4,
alpha = 0.7,
conv_criterion = 1,
tol = 0.01,
max.iter = 30,
iter_warmup = 100,
iter_sampling = 250,
trace = 1,
use_cmdstanr = FALSE

)

Arguments:
popdens character string. Name of the population density column
covs vector of strings. Base names of the covariates to include. For temporally-varying co-

variates only the stem is required and not the individual column names for each time period
(e.g. dayMon and not dayMon1, dayMon2, etc.) Alternatively, a formula can be passed to the
formula arguments below.

covs_grid If using a region model, covariates at the level of the grid can also be specified
by providing their names to this argument. Alternatively, a formula can be passed to the
formula arguments below.

approx Either "rank" for reduced rank approximation, or "nngp" for nearest neighbour Gaus-
sian process.

m integer. Number of basis functions for reduced rank approximation, or number of nearest
neighbours for nearest neighbour Gaussian process. See Details.

L integer. For reduced rank approximation, boundary condition as proportionate extension of
area, e.g. L=2 is a doubling of the analysis area. See Details.

model Either "exp" for exponential covariance function or "sqexp" for squared exponential co-
variance function

known_theta An optional vector of two values of the covariance parameters. If these are pro-
vided then the covariance parameters are assumed to be known and will not be estimated.

starting_values An optional list providing starting values of the model parameters. The list
can have named elements gamma for the linear predictor parameters, theta for the covari-
ance parameters, and ar for the auto-regressive parameter. If there are covariates for the
grid in a region data model then their parameters are gamma_g. The list elements must be a
vector of starting values. If this is not provided then the non-intercept linear predictor pa-
rameters are initialised randomly as N(0,0.1), the covariance parameters as Uniform(0,0.5)
and the auto-regressive parameter to 0.1.

lower_bound Optional. Vector of lower bound values for the fixed effect parameters.

22 grid

upper_bound Optional. Vector of upper bound values for the fixed effect parameters.
formula_1 Optional. Instead of providing a list of covariates above (to covs) a formula can be

specified here. For a regional model, this argument specified the regional-level fixed effects
model.

formula_2 Optional. Instead of providing a list of covariates above (to covs_grid) a formula
can be specified here. For a regional model, this argument specified the grid-level fixed
effects model.

algo integer. 1 = MCMC ML with L-BFGS for beta and non-approximate covariance param-
eters, 2 = MCMC ML with BOBYQA for both, 3 = MCMC ML with L-BFGS for beta,
BOBYQA for covariance parameters, 4 = SAEM with BOBYQA for both, 5 = SAEM with
RP averaging and BOBYQA for both (default), 6-8 = as 1-3 but with adaptive MCMC
sample size that starts at 20 with a max of iter_sampling

alpha Optional. Value for alpha in the SAEM parameter.
conv_criterion Integer. The convergence criterion for the algorithm. 1 = No improvement in

the overall log-likelihood with probability 0.95, 2 = No improvement in the log-likelihood
for beta with probability 0.95, 3 = Difference between model parameters is less than tol
between iterations.

tol Scalar indicating the upper bound for the maximum absolute difference between parameter
estimates on sucessive iterations, after which the algorithm terminates.

max.iter Integer. The maximum number of iterations for the algorithm.
iter_warmup integer. Number of warmup iterations
iter_sampling integer. Number of sampling iterations
trace Integer. Level of detail of information printed to the console. 0 = none, 1 = some

(default), 2 = most.
use_cmdstanr logical. Defaults to false. If true then cmdstanr will be used instead of rstan.
... additional options to pass to $sample()

Returns: Optionally, an rtsFit model fit object. This fit is stored internally and can be retrieved
with model_fit()

Examples:
a simple example with completely random points
b1 <- sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
dp <- data.frame(y=runif(10,0,3),x=runif(10,0,3),date=paste0("2021-01-",11:20))
dp <- create_points(dp,pos_vars = c('y','x'),t_var='date')
cov1 <- grid$new(b1,0.8)
cov1$grid_data$cov <- runif(nrow(cov1$grid_data))
g1$add_covariates(cov1$grid_data,

zcols="cov",
verbose = FALSE)

g1$points_to_grid(dp, laglength=5)
\donttest{
g1$lgcp_ml(popdens="cov",iter_warmup = 100, iter_sampling = 50)
g1$model_fit()
g1$extract_preds("rr")
g1$plot("rr")
g1$hotspots(rr.threshold = 2)

grid 23

this example uses real aggregated data but will take a relatively long time to run
data("birmingham_crime")
example_data <- birmingham_crime[,c(1:8,21)]
example_data$y <- birmingham_crime$t12
g2 <- grid$new(example_data,cellsize=1000)
g2$lgcp_ml(popdens = "pop",iter_warmup = 100, iter_sampling = 50)
g2$model_fit()
g2$extract_preds("rr")
g2$plot("rr")
g2$hotspots(rr.threshold = 2)

}

Method extract_preds(): Extract predictions
Extract incidence and relative risk predictions. The predictions will be extracted from the last
model fit. If no previous model fit then use either lgcp_ml() or lgcp_bayes(), or see model_fit()
to update the stored model fit.

Usage:
grid$extract_preds(
type = c("pred", "rr", "irr"),
irr.lag = NULL,
t.lag = 0,
popdens = NULL,
verbose = TRUE

)

Arguments:
type Vector of character strings. Any combination of "pred", "rr", and "irr", which are, poste-

rior mean incidence (overall and population standardised), relative risk, and incidence rate
ratio, respectively.

irr.lag integer. If "irr" is requested as type then the number of time periods lag previous the
ratio is in comparison to

t.lag integer. Extract predictions for previous time periods.
popdens character string. Name of the column in grid_data with the population density data
verbose Logical indicating whether to print messages to the console

Returns: NULL

Examples:
See examples for lgcp_bayes() and lgcp_ml()

Method hotspots(): Generate hotspot probabilities
Generate hotspot probabilities. The last model fit will be used to extract predictions. If no previous
model fit then use either lgcp_ml() or lgcp_bayes(), or see model_fit() to update the stored
model fit.
Given a definition of a hotspot in terms of threshold(s) for incidence, relative risk, and/or inci-
dence rate ratio, returns the probabilities each area is a "hotspot". See Details of extract_preds.
Columns will be added to grid_data. Note that for incidence threshold, the threshold should be
specified as the per individual incidence.

24 grid

Usage:
grid$hotspots(
incidence.threshold = NULL,
irr.threshold = NULL,
irr.lag = 1,
rr.threshold = NULL,
t.lag = 0,
popdens,
col_label = NULL

)

Arguments:

incidence.threshold Numeric. Threshold of population standardised incidence above which
an area is a hotspot

irr.threshold Numeric. Threshold of incidence rate ratio above which an area is a hotspot.
irr.lag integer. Lag of time period to calculate the incidence rate ratio. Only required if

irr.threshold is not NULL.
rr.threshold numeric. Threshold of local relative risk above which an area is a hotspot
t.lag integer. Extract predictions for incidence or relative risk for previous time periods.
popdens character string. Name of variable in grid_data specifying the population density.

Needed if incidence.threshold is not NULL
col_label character string. If not NULL then the name of the column for the hotspot proba-

bilities.

Returns: None, called for effects. Columns are added to grid or region data.

Examples:

\dontrun{
See examples for lgcp_bayes() and lgcp_ml()
}

Method aggregate_output(): Aggregate output
Aggregate lgcp_fit output to another geography

Usage:
grid$aggregate_output(
new_geom,
zcols,
weight_type = "area",
popdens = NULL,
verbose = TRUE

)

Arguments:

new_geom sf object. A set of polygons covering the same area as boundary
zcols vector of character strings. Names of the variables in grid_data to map to the new

geography
weight_type character string, either "area" or "pop" for area-weighted or population weighted

averaging, respectively

grid 25

popdens character string. If weight_type is equal to "pop" then the name of the column in
grid_data with population density data

verbose logical. Whether to provide progress bar.

Returns: An sf object identical to new_geom with additional columns with the variables speci-
fied in zcols

Examples:
\donttest{
b1 <- sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
dp <- data.frame(y=runif(10,0,3),x=runif(10,0,3),date=paste0("2021-01-",11:20))
dp <- create_points(dp,pos_vars = c('y','x'),t_var='date')
cov1 <- grid$new(b1,0.8)
cov1$grid_data$cov <- runif(nrow(cov1$grid_data))
g1$add_covariates(cov1$grid_data,

zcols="cov",
verbose = FALSE)

g1$points_to_grid(dp, laglength=5)
g1$priors <- list(
prior_lscale=c(0,0.5),
prior_var=c(0,0.5),
prior_linpred_mean=c(0),
prior_linpred_sd=c(5)
)

res <- g1$lgcp_bayes(popdens="cov", parallel_chains = 1)
g1$extract_preds(res,

type=c("pred","rr"),
popdens="cov")

new1 <- g1$aggregate_output(cov1$grid_data,
zcols="rr")

}

Method scale_conversion_factor(): Returns scale conversion factor
Coordinates are scaled to [-1,1] for LGCP models fit with HSGP. This function returns the
scaling factor for this conversion.

Usage:
grid$scale_conversion_factor()

Returns: numeric

Examples:
b1 = sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
g1$scale_conversion_factor()

Method get_region_data(): Returns summary data of the region/grid intersections
Information on the intersection between the region areas and the computational grid including
the number of cells intersecting each region (n_cell), the indexes of the cells intersecting each
region in order (cell_id), and the proportion of each region’s area covered by each intersecting
grid cell (q_weights).

26 grid

Usage:
grid$get_region_data()

Returns: A named list

Method variogram(): Plots the empirical semi-variogram

Usage:
grid$variogram(popdens, yvar, nbins = 20)

Arguments:

popdens String naming the variable in the data specifying the offset. If not provided then no
offset is used.

yvar String naming the outcome variable to calculate the variogram for. Optional, if not pro-
vided then the outcome count data will be used.

nbins The number of bins in the empirical semivariogram

Returns: A ggplot plot is printed and optionally returned

Method reorder(): Re-orders the computational grid
The quality of the nearest neighbour approximation can depend on the ordering of the grid cells.
This function reorders the grid cells. If this is a region data model, then the intersections are
recomputed.

Usage:
grid$reorder(option = "y", verbose = TRUE)

Arguments:

option Either "y" for order of the y coordinate, "x" for order of the x coordinate, "minimax" in
which the next observation in the order is the one which maximises the minimum distance
to the previous observations, or "random" which randomly orders them.

verbose Logical indicating whether to print a progress bar (TRUE) or not (FALSE).

Returns: No return, used for effects.

Method data(): A list of prepared data
The class prepares data for use in the in-built estimation functions. The same data could be used
for alternative models. This is a utility function to facilitate model fitting for custom models.

Usage:
grid$data(m, approx, popdens, covs, covs_grid)

Arguments:

m The number of nearest neighbours or basis functions.
approx Either "rank" for reduced rank approximation, or "nngp" for nearest neighbour Gaus-

sian process.
popdens String naming the variable in the data specifying the offset. If not provided then no

offset is used.
covs An optional vector of covariate names. For regional data models, this is specifically for

the region-level covariates.
covs_grid An optional vector of covariate names for region data models, identifying the co-

variates at the grid level.

grid 27

Returns: A named list of data items used in model fitting

Method get_random_effects(): Returns the random effects stored in the object (if any) after
using ML fitting. It’s main use is if a fitting procedure is stopped, the random effects can still be
returned.

Usage:

grid$get_random_effects()

Returns: A matrix of random effects samples if a MCMCML model has been initialised,
otherwise returns FALSE

Method model_fit(): Either returns the stored last model fit with either lgcp_ml or lgcp_bayes,
or updates the saved model fit if an object is provided.

Usage:

grid$model_fit(fit = NULL)

Arguments:

fit Optional. A previous rtsFit object. If provided then the function updates the internally
stored model fit.

Returns: Either a rtsFit object or nothing if no model has been previously fit, or if the fit is
updated.

Method clone(): The objects of this class are cloneable with this method.

Usage:

grid$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

(1) Solin A, Särkkä S. Hilbert space methods for reduced-rank Gaussian process regression. Stat
Comput. 2020;30:419–46. doi:10.1007/s11222-019-09886-w.

(2) Riutort-Mayol G, Bürkner P-C, Andersen MR, Solin A, Vehtari A. Practical Hilbert space ap-
proximate Bayesian Gaussian processes for probabilistic programming. Stat Comput. 2023;33:17.
doi:10.1007/s11222-022-10167-2.

See Also

create_points

points_to_grid, add_covariates

points_to_grid, add_covariates

28 grid

Examples

--
Method `grid$new`
--

a simple example with a square and a small number of cells
this same running example is used for the other functions
b1 = sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)

an example with multiple polygons
data("birmingham_crime")
g2 <- grid$new(birmingham_crime,cellsize = 1000)

--
Method `grid$plot`
--

b1 = sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
g1$plot()

a plot with covariates - we simulate covariates first
g1$grid_data$cov <- stats::rnorm(nrow(g1$grid_data))
g1$plot("cov")

--
Method `grid$points_to_grid`
--

b1 <- sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
simulate some points
dp <- data.frame(y=runif(10,0,3),x=runif(10,0,3),date=paste0("2021-01-",11:20))
dp <- create_points(dp,pos_vars = c('y','x'),t_var='date')
g1$points_to_grid(dp, laglength=5)

--
Method `grid$add_covariates`
--

b1 <- sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
cov1 <- grid$new(b1,0.8)
cov1$grid_data$cov <- runif(nrow(cov1$grid_data))
g1$add_covariates(cov1$grid_data,

zcols="cov",
verbose = FALSE)

mapping population data from some other polygons
data("boundary")

grid 29

data("birmingham_crime")
g2 <- grid$new(boundary,cellsize=0.008)
msoa <- sf::st_transform(birmingham_crime,crs = 4326)
suppressWarnings(sf::st_crs(msoa) <- sf::st_crs(g2$grid_data)) # ensure crs matches
g2$add_covariates(msoa,

zcols="pop",
weight_type="area",
verbose=FALSE)

g2$plot("pop")

--
Method `grid$get_dow`
--

b1 <- sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
dp <- data.frame(y=runif(10,0,3),x=runif(10,0,3),date=paste0("2021-01-",11:20))
dp <- create_points(dp,pos_vars = c('y','x'),t_var='date')
g1$points_to_grid(dp, laglength=5)
dow <- g1$get_dow()
g1$add_covariates(dow,zcols = colnames(dow)[3:ncol(dow)])

--
Method `grid$lgcp_bayes`
--

the data are just random simulated points
b1 <- sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
dp <- data.frame(y=runif(10,0,3),x=runif(10,0,3),date=paste0("2021-01-",11:20))
dp <- create_points(dp,pos_vars = c('y','x'),t_var='date')
cov1 <- grid$new(b1,0.8)
cov1$grid_data$cov <- runif(nrow(cov1$grid_data))
g1$add_covariates(cov1$grid_data,

zcols="cov",
verbose = FALSE)

g1$points_to_grid(dp, laglength=5)
g1$priors <- list(

prior_lscale=c(0,0.5),
prior_var=c(0,0.5),
prior_linpred_mean=c(0),
prior_linpred_sd=c(5)
)

g1$lgcp_bayes(popdens="cov", approx = "hsgp", parallel_chains = 0)
g1$model_fit()
we can extract predictions
g1$extract_preds("rr")
g1$plot("rr")
g1$hotspots(rr.threshold = 2)

this example uses real aggregated data but will take a relatively long time to run

30 grid

data("birmingham_crime")
example_data <- birmingham_crime[,c(1:8,21)]
example_data$y <- birmingham_crime$t12
g2 <- grid$new(example_data,cellsize=1000)
g2$priors <- list(
prior_lscale=c(0,0.5),
prior_var=c(0,0.5),
prior_linpred_mean=c(-3),
prior_linpred_sd=c(5)

)
g2$lgcp_bayes(popdens="pop", approx = "hsgp", parallel_chains = 0)
g2$model_fit()
g2$extract_preds("rr")
g2$plot("rr")
g2$hotspots(rr.threshold = 2)

--
Method `grid$lgcp_ml`
--

a simple example with completely random points
b1 <- sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
dp <- data.frame(y=runif(10,0,3),x=runif(10,0,3),date=paste0("2021-01-",11:20))
dp <- create_points(dp,pos_vars = c('y','x'),t_var='date')
cov1 <- grid$new(b1,0.8)
cov1$grid_data$cov <- runif(nrow(cov1$grid_data))
g1$add_covariates(cov1$grid_data,

zcols="cov",
verbose = FALSE)

g1$points_to_grid(dp, laglength=5)

g1$lgcp_ml(popdens="cov",iter_warmup = 100, iter_sampling = 50)
g1$model_fit()
g1$extract_preds("rr")
g1$plot("rr")
g1$hotspots(rr.threshold = 2)

this example uses real aggregated data but will take a relatively long time to run
data("birmingham_crime")
example_data <- birmingham_crime[,c(1:8,21)]
example_data$y <- birmingham_crime$t12
g2 <- grid$new(example_data,cellsize=1000)
g2$lgcp_ml(popdens = "pop",iter_warmup = 100, iter_sampling = 50)
g2$model_fit()
g2$extract_preds("rr")
g2$plot("rr")
g2$hotspots(rr.threshold = 2)

--

grid 31

Method `grid$extract_preds`
--

See examples for lgcp_bayes() and lgcp_ml()

--
Method `grid$hotspots`
--

Not run:
See examples for lgcp_bayes() and lgcp_ml()

End(Not run)

--
Method `grid$aggregate_output`
--

b1 <- sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
dp <- data.frame(y=runif(10,0,3),x=runif(10,0,3),date=paste0("2021-01-",11:20))
dp <- create_points(dp,pos_vars = c('y','x'),t_var='date')
cov1 <- grid$new(b1,0.8)
cov1$grid_data$cov <- runif(nrow(cov1$grid_data))
g1$add_covariates(cov1$grid_data,

zcols="cov",
verbose = FALSE)

g1$points_to_grid(dp, laglength=5)
g1$priors <- list(

prior_lscale=c(0,0.5),
prior_var=c(0,0.5),
prior_linpred_mean=c(0),
prior_linpred_sd=c(5)
)

res <- g1$lgcp_bayes(popdens="cov", parallel_chains = 1)
g1$extract_preds(res,

type=c("pred","rr"),
popdens="cov")

new1 <- g1$aggregate_output(cov1$grid_data,
zcols="rr")

--
Method `grid$scale_conversion_factor`
--

b1 = sf::st_sf(sf::st_sfc(sf::st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0))))))
g1 <- grid$new(b1,0.5)
g1$scale_conversion_factor()

32 predict.grid

logLik.rtsFit Extracts the log-likelihood from an rtsFit object

Description

Extracts the final log-likelihood value from an rtsFit object. Only returns a value for maximum
likelihood model fits, otherwise it produces an error.

Usage

S3 method for class 'rtsFit'
logLik(object, ...)

Arguments

object An rtsFit model fit.

... Further arguments passed from other methods

Value

An object of class logLik for maximum likelihood model fits, otherwise it returns an error.

predict.grid Extract predictions from a grid object

Description

Extract incidence and relative risk predictions. The predictions will be extracted from the last model
fit in the grid object. If no previous model fit then use either grid$lgcp_ml() or grid$lgcp_bayes(),
or see grid$model_fit() to update the stored model fit.

Usage

S3 method for class 'grid'
predict(
object,
type = c("pred", "rr", "irr"),
irr.lag = NULL,
t.lag = 0,
popdens = NULL,
verbose = TRUE,
...

)

predict.grid 33

Arguments

object A grid object.

type Vector of character strings. Any combination of "pred", "rr", and "irr", which
are, posterior mean incidence (overall and population standardised), relative
risk, and incidence rate ratio, respectively.

irr.lag integer. If "irr" is requested as type then the number of time periods lag previous
the ratio is in comparison to

t.lag integer. Extract predictions for previous time periods.

popdens character string. Name of the column in grid_data with the population density
data

verbose Logical indicating whether to print messages to the console

... Further arguments passed from other methods

Details

Three outputs can be extracted from the model fit:

Predicted incidence: If type includes pred then pred_mean_total and pred_mean_total_sd pro-
vide the predicted mean total incidence and its standard deviation, respectively. pred_mean_pp
and pred_mean_pp_sd provide the predicted population standardised incidence and its standard
deviation. These are added to the grid data or to the regional data for spatially-aggregated data.

Relative risk: if type includes rr then the relative risk is reported in the columns rr and rr_sd.
The relative risk here is the exponential of the latent field, which describes the relative difference
between expected mean and predicted mean incidence. These are added to the grid data.

Incidence risk ratio: if type includes irr then the incidence rate ratio (IRR) is reported in the
columns irr and irr_sd. This is the ratio of the predicted incidence in the last period (minus
t_lag) to the predicted incidence in the last period minus irr_lag (minus t_lag). For example, if
the time period is in days then setting irr_lag to 7 and leaving t_lag=0 then the IRR is the relative
change in incidence in the present period compared to a week prior. These are added to the grid
data or to the regional data for spatially-aggregated data.

Value

An sf object in which the predictions are stored.

Examples

See examples for grid$lgcp_bayes() and grid$lgcp_ml()

34 print.rtsFit

predict.rtsFit Predict from a rtsFit object

Description

Predictions cannot be generated directly from an rtsFit object, rather new predictions should be
generated using the original grid object. A message is printed to the user.

Usage

S3 method for class 'rtsFit'
predict(object, ...)

Arguments

object A rtsFit object.
... Further arguments passed from other methods

Value

Nothing. Called for effects.

print.rtsFit Prints an rtsFit fit output

Description

Print method for class "rtsFit"

Usage

S3 method for class 'rtsFit'
print(x, ...)

Arguments

x an object of class "rtsFit"
... Further arguments passed from other methods

Details

print.rtsFit tries to replicate the output of other regression functions, such as lm and lmer re-
porting parameters, standard errors, and z- and p- statistics for maximum likelihood esitmates, or
posterior means, standard deviations and credible intervals for Bayesian models.

Value

No return value, called for side effects.

print.rtsFitSummary 35

print.rtsFitSummary Prints an rtsFitSummary fit output

Description

Print method for class "rtsFitSummary"

Usage

S3 method for class 'rtsFitSummary'
print(x, ...)

Arguments

x an object of class "rtsFitSummary"

... Further arguments passed from other methods

Details

print.rtsFitSummary prints the summary of an rtsFit, see summary.rtsFit

Value

No return value, called for side effects.

progress_bar Generates a progress bar

Description

Prints a progress bar

Usage

progress_bar(i, n, len = 30)

Arguments

i integer. The current iteration.

n integer. The total number of interations

len integer. Length of the progress a number of characters

Value

A character string

36 residuals.grid

Examples

progress_bar(10,100)

random.effects Extracts the random effect estimates

Description

Extracts the random effect estimates or samples from an rtsFit object returned from call of
lgcp_ml() or lgcp_bayes() in the grid class.

Usage

random.effects(object)

Arguments

object An mcml model fit.

Value

A matrix of dimension (number of fixed effects) x (number of MCMC samples). For Laplace
approximation, the number of "samples" equals one.

residuals.grid Residuals method for a grid object

Description

Conditional raw or standardised residuals are returned for a stored rtsFit objects. If no prior model
fit is stored, then an error is returned.

Usage

S3 method for class 'grid'
residuals(object, type, ...)

Arguments

object A grid object.

type Either "standardized" or "raw"

... Further arguments passed from other methods

Value

A matrix with number of columns corresponding to the number of MCMC samples.

residuals.rtsFit 37

residuals.rtsFit Residuals method for a rtsFit object

Description

Conditional raw or standardised residuals for rstFit objects. The residuals are limited to condi-
tional raw or standardised residuals currently to avoid copying the often large amount of model data
stored in the associated grid object.

Usage

S3 method for class 'rtsFit'
residuals(object, type, ...)

Arguments

object A rtsFit object.

type Either "standardized" or "raw"

... Further arguments passed from other methods

Value

A matrix with number of columns corresponding to the number of MCMC samples.

summary.grid Summarizes a grid object

Description

Summarizes grid object.

Usage

S3 method for class 'grid'
summary(object, ...)

Arguments

object A grid object.

... Further arguments passed from other methods

Value

Nothing. Called for effects.

38 vcov.grid

summary.rtsFit Summary method for class "rtsFit"

Description

Summary method for class "rtsFit"

Usage

S3 method for class 'rtsFit'
summary(object, ...)

Arguments

object an object of class "rtsFit" as a result of a call to lgcp_ml() or lgcp_bayes()

... Further arguments passed from other methods

Details

The summary methods aims to replicate the output of other regression model fitting functions and
reports central point estimates, relevant test statistics, and uncertainty intervals. In addition, the re-
turned summary object will also include time period specific relative risk and incidence predictions.

Value

An rtsFitSummary object

vcov.grid Calculate Variance-Covariance matrix for a maximum likelihood ob-
ject stored in grid

Description

Returns the variance-covariance matrix for a LGCP object fit using maximum likelihood. If no
relevant model is stored then the function returns an error

Usage

S3 method for class 'grid'
vcov(object, ...)

Arguments

object A grid object.

... Further arguments passed from other methods

vcov.rtsFit 39

Value

A variance-covariance matrix.

vcov.rtsFit Extract the Variance-Covariance matrix for a rtsFit object

Description

Returns the calculated variance-covariance matrix for a rtsFit object that was fit using maximum
likelihood methods. Bayesian models will return an error.

Usage

S3 method for class 'rtsFit'
vcov(object, ...)

Arguments

object A rtsFit object.

... Further arguments passed from other methods

Value

A variance-covariance matrix.

Index

∗ datasets
birmingham_crime, 5
boundary, 5
example_points, 8

∗ package
rts2-package, 2

birmingham_crime, 5
boundary, 5

coef.rtsFit, 5
confint.rtsFit, 6
covariance.parameters, 6
create_points, 3, 7, 12, 16, 27

example_points, 8

family, 8, 9
family.grid, 8
family.rtsFit, 9
fitted.rtsFit, 9
fixed.effects, 10
formula, 10, 11
formula.grid, 10
formula.rtsFit, 11

grid, 6, 10, 11, 36

logLik.rtsFit, 32

Model, 5

predict.grid, 32
predict.rtsFit, 34
print.rtsFit, 34
print.rtsFitSummary, 35
progress_bar, 35

random.effects, 36
residuals.grid, 36
residuals.rtsFit, 37

rts2 (rts2-package), 2
rts2-package, 2

stanfit, 19
strptime, 7
summary.grid, 37
summary.rtsFit, 35, 38

vcov.grid, 38
vcov.rtsFit, 39

40

	rts2-package
	birmingham_crime
	boundary
	coef.rtsFit
	confint.rtsFit
	covariance.parameters
	create_points
	example_points
	family.grid
	family.rtsFit
	fitted.rtsFit
	fixed.effects
	formula.grid
	formula.rtsFit
	grid
	logLik.rtsFit
	predict.grid
	predict.rtsFit
	print.rtsFit
	print.rtsFitSummary
	progress_bar
	random.effects
	residuals.grid
	residuals.rtsFit
	summary.grid
	summary.rtsFit
	vcov.grid
	vcov.rtsFit
	Index

